Effective in situ harvest of microalgae with bacterial cellulose produced by Gluconacetobacter xylinus

被引:19
|
作者
Chen, Qiaohong [1 ]
Fan, Qi [1 ]
Zhang, Zexuan [1 ]
Mei, Yiqiang [1 ]
Wang, Haiying [1 ]
机构
[1] South Ctr Univ Nationalities, Coll Life Sci, Wuhan 430074, Hubei, Peoples R China
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2018年 / 35卷
关键词
Microalgae; Harvest; Bacterial cellulose; Gluconacetobacter xylinus; BIOMASS; FLOCCULATION; BIOFUELS; YIELD;
D O I
10.1016/j.algal.2018.09.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A new biological approach was explored to harvest microalgae in situ with bacterial cellulose produced by Gluconacetobacter xylinus grown in microalgal culture by adding different proportions of glucose/yeast extract (GY) media. This study attempted to optimize this process in terms of GY media concentration, process time, microalgae cell concentration, and oscillation speed. Bacterial cellulose successfully harvested nearly 90% of Scenedesmus obliqnus and Chlamydomonas reinhardtii after only 8 h, and 92% of Chlorella vulgaris after 48 h, with supplementation of 30% (v/v) GY media to the microalgae culture. This method allows harvested media to be recycled instead of GY media, and can be used for a variety of cell densities. Scanning electron microscopy revealed that microalgae cells were harvested after being embedded in a network of bacterial cellulose. These results suggest this effective and simple operation has the potential for developing a cost-effective harvest method for microalgae production.
引用
收藏
页码:349 / 354
页数:6
相关论文
共 50 条
  • [1] Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose
    Ruka, Dianne R.
    Simon, George P.
    Dean, Katherine M.
    CARBOHYDRATE POLYMERS, 2012, 89 (02) : 613 - 622
  • [2] Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production
    Zhong, Cheng
    Zhang, Gui-Cai
    Liu, Miao
    Zheng, Xin-Tong
    Han, Pei-Pei
    Jia, Shi-Ru
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (14) : 6189 - 6199
  • [3] PREPARATION AND CHARACTERIZATION OF BACTERIAL CELLULOSE PRODUCED IN MODIFIED HESTERIN-SCHRAMM MEDIUM BY GLUCONACETOBACTER XYLINUS
    Alighanbari, Mohammadmahdi
    Danafar, Firoozeh
    Bakhtiari, Fereshteh
    Jajarmi, Maziar
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 2023, 57 (5-6): : 515 - 525
  • [4] Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus
    Keshk, Sherif M. A. S.
    CARBOHYDRATE POLYMERS, 2014, 99 : 98 - 100
  • [5] In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus
    Chen, Hui-Huang
    Chen, Li-Chen
    Huang, Huang-Chan
    Lin, Shih-Bin
    CELLULOSE, 2011, 18 (06) : 1573 - 1583
  • [6] Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose
    Fijalkowski, Karol
    Zywicka, Anna
    Drozd, Radoslaw
    Kordas, Marian
    Rakoczy, Rafal
    POLISH JOURNAL OF CHEMICAL TECHNOLOGY, 2016, 18 (04) : 117 - 123
  • [7] In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus
    Hui-Huang Chen
    Li-Chen Chen
    Huang-Chan Huang
    Shih-Bin Lin
    Cellulose, 2011, 18 : 1573 - 1583
  • [8] Strain improvement of Gluconacetobacter xylinus NCIM 2526 for bacterial cellulose production
    Hungund, Basavaraj S.
    Gupta, S. G.
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (32): : 5170 - 5172
  • [9] Utilization of Corncob Acid Hydrolysate for Bacterial Cellulose Production by Gluconacetobacter xylinus
    Huang, Chao
    Yang, Xiao-Yan
    Xiong, Lian
    Guo, Hai-Jun
    Luo, Jun
    Wang, Bo
    Zhang, Hai-Rong
    Lin, Xiao-Qing
    Chen, Xin-De
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2015, 175 (03) : 1678 - 1688
  • [10] Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus
    Wu, Sheng-Chi
    Li, Meng-Hsun
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2015, 120 (04) : 444 - 449