Bisimulation for general stochastic hybrid systems

被引:0
作者
Bujorianu, ML [1 ]
Lygeros, J
Bujorianu, MC
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Univ Patras, Dept Elect & Comp Engn, GR-26500 Patras, Greece
[3] Univ Kent, Comp Lab, Canterbury CT2 7NF, Kent, England
来源
HYBRID SYSTEMS: COMPUTATION AND CONTROL | 2005年 / 3414卷
关键词
stochastic hybrid systems; Markov processes; simulation morphism; zigzag morphism; bisimulation; category theory;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we define a bisimulation concept for some very general models for stochastic hybrid systems (general stochastic hybrid systems). The definition of bisimulation builds on the ideas of Edalat and of Larsen and Skou and of Joyal, Nielsen and Winskel. The main result is that this bisimulation for GSHS is indeed an equivalence relation. The secondary result is that this bisimulation relation for the stochastic hybrid system models used in this paper implies the same kind of bisimulation for their continuous parts and respectively for their jumping structures.
引用
收藏
页码:198 / 214
页数:17
相关论文
共 23 条
[11]  
BUJORIANU ML, 2004, IEEE MED C CONTR AUT
[12]  
BUJORIANU ML, P 6 INT S MATH THEOR
[13]  
Davis M., 1993, MARKOV MODELS OPTIMI
[14]  
Edalat A., 1999, Mathematical Structures in Computer Science, V9, P523, DOI 10.1017/S0960129599002819
[15]  
HAGHVERDI E, UNPUB THEOR COMPUT S
[16]  
HMISSI M, 1989, SEM TH POTENTIAL, V9, P135
[17]   Bisimulation from open maps [J].
Joyal, A ;
Nielsen, M ;
Winskel, G .
INFORMATION AND COMPUTATION, 1996, 127 (02) :164-185
[18]   BISIMULATION THROUGH PROBABILISTIC TESTING [J].
LARSEN, KG ;
SKOU, A .
INFORMATION AND COMPUTATION, 1991, 94 (01) :1-28
[19]  
MEYER PA, 1976, PROCESSUS MARKOV LNM, V26
[20]  
POPA E, 1998, AN ST U IASI, V44, P335