共 1 条
TOPOLOGY AND PERIODIC ORBITS OF RING-SHAPED POTENTIALS AS A GENERALIZED 4-D ISOTROPIC OSCILLATOR
被引:0
|作者:
Balsas, M. C.
[1
]
Ferrer, S.
[2
]
Jimenez, E. S.
[1
]
Vera, J. A.
[3
]
机构:
[1] Univ Politecn Cartagena Murcia, Murcia, Spain
[2] Univ Murcia, E-30001 Murcia, Spain
[3] Ctr Univ Def MDE UPCT, Murcia 30720, Spain
来源:
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS
|
2010年
/
20卷
/
09期
关键词:
Hamiltonian system;
generalized 4-D isotropic oscillator;
ring-shaped potentials;
Liouville-Arnold theorem;
periodic orbits;
PHASE PORTRAITS;
MOTION;
D O I:
10.1142/S0218127410027374
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this work we study a generalized integrable biparametric family of 4-D isotropic oscillators. This family allows to treat, in a unified way, oscillators defined by the potentials given by Hartmann and Quesne and other ring-shaped systems. Using the Liouville-Arnold theorem and the analysis of the momentum map in its critical points, we obtain a complete topological classification of the different invariant sets of the phase flow of this problem. By this topological study and the calculation of the action-angle variables we obtain the full classification of periodic and quasiperiodic orbits for this system.
引用
收藏
页码:2809 / 2821
页数:13
相关论文