Hybrid position/force control, velocity projection, and passivity

被引:0
|
作者
Joly, L [1 ]
Micaelli, A [1 ]
机构
[1] CEA, STR, F-92265 Fontenay Aux Roses, France
来源
ROBOT CONTROL 1997, VOLS 1 AND 2 | 1998年
关键词
robot control; position control; force control; robustness; stability analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hybrid position/force control is an approach to robot manipulator control to deal with tasks involving mechanical interaction between the robot and its environment. It consists in controlling simultaneously some position parameters, and some interaction force parameters. The main challenge associated with this approach is to guarantee the controlled system stability for any choice of the position- and force-controlled parameters. This is all the more difficult as the robot interacts dynamically with an environment whose dynamics are usually poorly known. In this paper, we propose solutions regarding the position control loop. They are based on passivity theory.
引用
收藏
页码:325 / 331
页数:3
相关论文
共 50 条
  • [11] Neural Network-Based Hybrid Position/Force Tracking Control for Robotic Systems Without Velocity Measurement
    Peng, Jinzhu
    Ding, Shuai
    Yang, Zeqi
    Zhang, Fangfang
    NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1125 - 1144
  • [12] Biped Robot Position Control with Stability-Based Ground Reaction Force and Velocity Constraints
    Van Heerden, Kirill
    Kawamura, Atsuo
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2013, 2 (01) : 30 - 39
  • [13] Toward the implementation of hybrid position/force control in industrial robots
    Ferretti, G
    Magnani, G
    Rocco, P
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1997, 13 (06): : 838 - 845
  • [14] Force-based disturbance observer for dynamic force control and a position/force hybrid controller
    Sakaino, Sho
    Sato, Tomoya
    Ohnishi, Kouhei
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 8 (05) : 505 - 514
  • [15] Simulative investigation of hybrid force and position control for electromechanical feed axes in production machines
    Sewohl, Andre
    Norberger, Manuel
    Schlegel, Holger
    Putz, Matthias
    ENGINEERING REPORTS, 2022, 4 (7-8)
  • [16] Hybrid Force/Position Control of a Very Flexible Parallel Robot Manipulator in Contact with an Environment
    Ansarieshlaghi, Fatemeh
    Eberhard, Peter
    ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2, 2019, : 59 - 67
  • [17] Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator
    Himanshu Chaudhary
    Vikas Panwar
    Rajendra Prasad
    N. Sukavanam
    Journal of Intelligent Manufacturing, 2016, 27 : 1299 - 1308
  • [18] Adaptive neuro fuzzy based hybrid force/position control for an industrial robot manipulator
    Chaudhary, Himanshu
    Panwar, Vikas
    Prasad, Rajendra
    Sukavanam, N.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2016, 27 (06) : 1299 - 1308
  • [19] A Review of Robotic Force/Position Control
    LIU Zong-bin
    LIU Xiang-fa
    InternationalJournalofPlantEngineeringandManagement, 2013, 18 (01) : 58 - 64
  • [20] Novel Voltage-Based Weighted Hybrid Force/Position Control for Redundant Robot Manipulators
    Dai, Jun
    Zhang, Yi
    Deng, Hua
    ELECTRONICS, 2022, 11 (02)