Stability of two functional equations arising from number theory

被引:0
作者
Chung, Jaeyoung [1 ]
Chang, Jeongwook [2 ]
Choi, Chang-Kwon [3 ]
机构
[1] Kunsan Natl Univ, Dept Math, Kunsan 573701, South Korea
[2] Dankook Univ, Dept Math Educ, Yongin 448701, South Korea
[3] Jeonbuk Natl Univ, Dept Math, Jeonju 561756, South Korea
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2015年 / 26卷 / 01期
关键词
Exponential functional equation; Multiplicative function; Quaternion; Stability;
D O I
10.1016/j.indag.2014.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalizing two functional equations introduced in Houston and Sahoo (2008), Jung and Bae (2003), which arise from number theory we prove the stability of the equations f(x(1)x(2) + y(1)y(2), x(1)y(2) - x(2)y(1)) = g(x(1), y(1))h(x(2), y(2)) for all x(1), y(1), x(2), y(2) is an element of R, where f, g, h : R-2 -> R, and g(x(1), y(1), u(1), v(1))h(x(2), y(2), u(2), v(2)) = f(x(1)x(2) + y(1)y(2) + u(1)u(2) + v(1)v(2), x(1)y(2) - y(1)x(2) + u(1)v(2) - v(1)u(2,,) x(1)u(2) - y(1)v(2) - u(1)x(2) + v(1)y(2), x(1)v(2) + y(1)u(2) - u(1)y(2) - v(1)x(2)) for all x(1,) x(2,) y(1,) y(2,) u(1,) u(2,) v(1.) v(2) is an element of R, where f, g, h : R-4 -> R. (C) 2014 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:206 / 218
页数:13
相关论文
共 50 条
[31]   Stability and exact periodic solutions of indefinite equations arising from the Kepler problem on the sphere [J].
Bo, Xiaomeng ;
Liu, Qihuai ;
Liu, Wenye .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (04)
[32]   On two functional equations and their solutions [J].
Houston, Kelly B. ;
Sahoo, Prasanna K. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (09) :974-977
[33]   On the Stability of Functional Equations and a Problem of Ulam [J].
Themistocles M. Rassias .
Acta Applicandae Mathematica, 2000, 62 :23-130
[34]   STABILITY OF FUNCTIONAL EQUATIONS AND PROPERTIES OF GROUPS [J].
Forti, Gian Luigi .
ANNALES MATHEMATICAE SILESIANAE, 2019, 33 (01) :77-96
[35]   Stability analysis of nonlinear functional differential and functional equations [J].
Yu, Yuexin ;
Li, Shoufu .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :787-791
[36]   On the Stability of the Generalized Sine Functional Equations [J].
Kim, Gwang Hui .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (01) :29-38
[37]   Stability of Functional Equations in Several Variables [J].
Deng Hua ZHANG ;
Huai Xin CAO .
Acta Mathematica Sinica(English Series), 2007, 23 (02) :321-326
[38]   On the stability of functional equations and a problem of Ulam [J].
Rassias, TM .
ACTA APPLICANDAE MATHEMATICAE, 2000, 62 (01) :23-130
[39]   REMARKS ON THE STABILITY OF MONOMIAL FUNCTIONAL EQUATIONS [J].
Cadariu, Liviu ;
Radu, Viorel .
FIXED POINT THEORY, 2007, 8 (02) :201-218
[40]   Stability of Functional Equations in Several Variables [J].
Deng Hua Zhang ;
Huai Xin Cao .
Acta Mathematica Sinica, English Series, 2007, 23 :321-326