Numerical modeling of atmospherically perturbed phase screens: new solutions for classical fast Fourier transform and Zernike methods

被引:20
作者
Carbillet, Marcel [1 ]
Riccardi, Armando [2 ]
机构
[1] Univ Nice Sophia Antipolis, UMR H Fizeau 6525, CNRS, Observ Cote Azur, F-06108 Nice 2, France
[2] INAF Osservatorio Astrofis Arcetri, I-50125 Florence, Italy
关键词
ASTRONOMICAL ADAPTIVE OPTICS; SIMULATION; POLYNOMIALS;
D O I
10.1364/AO.49.000G47
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe new solutions permitting us to overcome the well-known problems encountered when employing the two main classical methods for numerical modeling of atmospherically perturbed phase screens. The first method, the fast-Fourier-transform-based numerical method, suffers from a lack of low frequencies. Subharmonics adding is an already-known solution to this problem, but no criterion has been defined up to now in order to precisely determine how many subharmonics are necessary for each given case of physical and numerical characteristics. We define two criteria and show their practical efficiency. The second, Zernike-based, method suffers, a contrario, from bad behavior of the phase screens at high spatial frequencies. To overcome this problem, due to numerical instability, we developed an algorithm based on an alternative definition of the Zernike polynomials, involving the recurrence definition of the Jacobi polynomials, as well as the relationship between the Zernike and the Jacobi polynomials. The methods described and used in this paper have been implemented within the freely distributed software package CAOS. (C) 2010 Optical Society of America
引用
收藏
页码:G47 / G52
页数:6
相关论文
共 12 条
  • [1] Born M., 1985, PRINCIPLES OPTICS
  • [2] LAOS -: a numerical simulation tool for astronomical adaptive optics (and beyond)
    Carbillet, M
    Vérinaud, C
    Guarracino, M
    Fini, L
    Lardière, O
    Le Roux, B
    Puglisi, A
    Femenía, B
    Riccardi, A
    Anconelli, B
    Correia, S
    Bertero, M
    Boccacci, P
    [J]. ADVANCEMENTS IN ADAPTIVE OPTICS, PTS 1-3, 2004, 5490 : 637 - 648
  • [3] Modelling astronomical adaptive optics - I. The software package CAOS
    Carbillet, M
    Verinaud, C
    Femenia, B
    Riccardi, A
    Fini, L
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2005, 356 (04) : 1263 - 1275
  • [4] SIMULATION OF A KOLMOGOROV PHASE SCREEN
    LANE, RG
    GLINDEMANN, A
    DAINTY, JC
    [J]. WAVES IN RANDOM MEDIA, 1992, 2 (03): : 209 - 224
  • [5] Magnus Wilhelm, 1966, Die Grundlehren der mathematischen Wissenschaften, V52
  • [6] ZERNIKE POLYNOMIALS AND ATMOSPHERIC-TURBULENCE
    NOLL, RJ
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (03) : 207 - 211
  • [7] PRESS RW, 1986, NUMERICAL RECIPES C
  • [8] REGAGNON PN, 1995, THESIS IMPERIAL COLL
  • [9] Roddier F, 1981, PROGR OPTICS, V19, P281, DOI DOI 10.1016/S0079-6638(08)70204-X
  • [10] ATMOSPHERIC WAVE-FRONT SIMULATION USING ZERNIKE POLYNOMIALS
    RODDIER, N
    [J]. OPTICAL ENGINEERING, 1990, 29 (10) : 1174 - 1180