Global Weak Solutions for SQG in Bounded Domains

被引:22
作者
Constantin, Peter [1 ]
Huy Quang Nguyen [2 ]
机构
[1] Princeton Univ, Dept Math, Fine Hall, Princeton, NJ 08544 USA
[2] Princeton Univ, Program Appl & Computat Math, Fine Hall, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
EQUATIONS;
D O I
10.1002/cpa.21720
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence of global weak L-2 solutions of the inviscid SQG equation in bounded domains. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:2323 / 2333
页数:11
相关论文
共 12 条
[1]  
[Anonymous], 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[2]  
[Anonymous], 1995, DYNAMICAL PROBLEMS N
[3]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[4]   Generalized surface quasi-geostrophic equations with singular velocities [J].
Chae, Dongho ;
Constantin, Peter ;
Cordoba, Diego ;
Gancedo, Francisco ;
Wu, Jiahong .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (08) :1037-1066
[5]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[6]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[7]   Critical SQG in Bounded Domains [J].
Constantin P. ;
Ignatova M. .
Annals of PDE, 2 (2)
[8]   Remarks on the Fractional Laplacian with Dirichlet Boundary Conditions and Applications [J].
Constantin, Peter ;
Ignatova, Mihaela .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (06) :1653-1673
[9]   Absence of Anomalous Dissipation of Energy in Forced Two Dimensional Fluid Equations [J].
Constantin, Peter ;
Tarfulea, Andrei ;
Vicol, Vlad .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :875-903
[10]   SURFACE QUASI-GEOSTROPHIC DYNAMICS [J].
HELD, IM ;
PIERREHUMBERT, RT ;
GARNER, ST ;
SWANSON, KL .
JOURNAL OF FLUID MECHANICS, 1995, 282 :1-20