Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage

被引:225
作者
Pan, Lijia [1 ]
Qiu, Hao [1 ]
Dou, Chunmeng [1 ]
Li, Yun [1 ]
Pu, Lin [1 ]
Xu, Jianbin [2 ]
Shi, Yi [1 ]
机构
[1] Nanjing Univ, Natl Lab Microstruct Nanjing, Key Lab Adv Photon & Elect Mat Jiangsu Prov, Sch Elect Sci & Engn, Nanjing 210093, Jiangsu Prov, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
关键词
conducting polymers; nanowires; nanotubes; polyaniline; polypyrrole; template synthesis; CURRENT-VOLTAGE CHARACTERISTICS; RECTANGULAR SUB-MICROTUBES; BENDING BEAM METHOD; HOLLOW SPHERES; POLYANILINE NANOTUBES; CHARGE-TRANSPORT; ELECTROCHEMICAL APPLICATIONS; POLYPYRROLE NANOTUBES; ELECTRONIC TRANSPORT; MESOSCOPIC DIAMETERS;
D O I
10.3390/ijms11072636
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Conducting polymer nanostructures have received increasing attention in both fundamental research and various application fields in recent decades. Compared with bulk conducting polymers, conducting polymer nanostructures are expected to display improved performance in energy storage because of the unique properties arising from their nanoscaled size: high electrical conductivity, large surface area, short path lengths for the transport of ions, and high electrochemical activity. Template methods are emerging for a sort of facile, efficient, and highly controllable synthesis of conducting polymer nanostructures. This paper reviews template synthesis routes for conducting polymer nanostructures, including soft and hard template methods, as well as its mechanisms. The application of conducting polymer mesostructures in energy storage devices, such as supercapacitors and rechargeable batteries, are discussed.
引用
收藏
页码:2636 / 2657
页数:22
相关论文
共 121 条
[1]   Polymer nanofibers and nanotubes: Charge transport and device applications [J].
Aleshin, AN .
ADVANCED MATERIALS, 2006, 18 (01) :17-27
[2]   Response characterization of electroactive polymers as mechanical sensors [J].
Alici, Gursel ;
Spinks, Geoffrey M. ;
Madden, John D. ;
Wu, Yanzhe ;
Wallace, Gordon G. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2008, 13 (02) :187-196
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Monolithic actuators from flash-welded polyaniline nanofibers [J].
Baker, Christina O. ;
Shedd, Brian ;
Innis, Peter C. ;
Whitten, Philip G. ;
Spinks, Geoffrey M. ;
Wallace, Gordon G. ;
Kaner, Richard B. .
ADVANCED MATERIALS, 2008, 20 (01) :155-+
[5]   ELECTRICALLY CONDUCTIVE POLYANILINE COPOLYMER LATEX COMPOSITES [J].
BEADLE, P ;
ARMES, SP ;
GOTTESFELD, S ;
MOMBOURQUETTE, C ;
HOULTON, R ;
ANDREWS, WD ;
AGNEW, SF .
MACROMOLECULES, 1992, 25 (09) :2526-2530
[6]   MOLECULAR AND SUPERMOLECULAR ORIGINS OF ENHANCED ELECTRONIC CONDUCTIVITY IN TEMPLATE-SYNTHESIZED POLYHETEROCYCLIC FIBRILS .1. SUPERMOLECULAR EFFECTS [J].
CAI, ZH ;
LEI, JT ;
LIANG, WB ;
MENON, V ;
MARTIN, CR .
CHEMISTRY OF MATERIALS, 1991, 3 (05) :960-967
[7]   ELECTRONICALLY CONDUCTIVE POLYMER FIBERS WITH MESOSCOPIC DIAMETERS SHOW ENHANCED ELECTRONIC CONDUCTIVITIES [J].
CAI, ZH ;
MARTIN, CR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (11) :4138-4139
[8]   Conducting poly(aniline) nanotubes and nanofibers: Controlled synthesis and application in lithium/poly(aniline) rechargeable batteries [J].
Cheng, FY ;
Tang, W ;
Li, CS ;
Chen, J ;
Liu, HK ;
Shen, PW ;
Dou, SX .
CHEMISTRY-A EUROPEAN JOURNAL, 2006, 12 (11) :3082-3088
[9]   Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties [J].
Chiou, Nan-Rong ;
Lui, Chunmeng ;
Guan, Jingjiao ;
Lee, L. James ;
Epstein, Arthur J. .
NATURE NANOTECHNOLOGY, 2007, 2 (06) :354-357
[10]   Polyaniline nanofibers prepared by dilute polymerization [J].
Chiou, NR ;
Epstein, AJ .
ADVANCED MATERIALS, 2005, 17 (13) :1679-+