Wave propagation and structural dynamics in graphene nanoribbons

被引:3
|
作者
Scarpa, F. [1 ]
Ruzzene, M. [2 ]
Adhikari, S. [3 ]
Chowdhury, R. [3 ]
机构
[1] Univ Bristol, Adv Composites Ctr Innovat & Sci, Bristol BS8 1TR, Avon, England
[2] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
[3] Swansea Univ, Multidisciplinary Nantechnol Ctr, Swansea SA2 8PP, W Glam, Wales
来源
NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2010 | 2010年 / 7646卷
关键词
ELASTIC PROPERTIES;
D O I
10.1117/12.847016
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene naoribbons (GNRs) are novel interesting nanostructures for the electronics industry, whereas their state as metallic or semiconductor material depends on the chirality of the graphene. We model the natural frequencies and the wave propagation characteristics of GNRs using an equivalent atomistic-continuum FE model previously developed by some of the Authors, where the C-C bonds thickness and average equilibrium lengths during the dynamic loading are identified through the minimisation of the system Hamiltonian. A molecular mechanics model based on the UFF potential is used to benchmark the hybrid FE model developed. The wave dispersion characteristics of the GNRs are simulated using a Floquet-based wave technique used to predict the pass-stop bands of periodic structures. We demonstrate that the thickness and equilibrium lengths for the different dynamic cases are different from the classical constant values used in open literature (0.34 nm for thickness and 0.142 for equilibrium length), in particular when considering out-of-plane flexural deformations. These parameters have to be taken into account when nanoribbons are designed as nano-oscillators.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Vibration mode localization in single- and multi-layered graphene nanoribbons
    Verma, Deepti
    Gupta, S. S.
    Batra, R. C.
    COMPUTATIONAL MATERIALS SCIENCE, 2014, 95 : 41 - 52
  • [42] Polarization in graphene nanoribbons with inherent defects using first-principles calculations
    Nevhal, S. K.
    Kundalwal, S., I
    ACTA MECHANICA, 2022, 233 (01) : 399 - 411
  • [43] Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility
    Wei, Ning
    Xu, Lanqing
    Wang, Hui-Qiong
    Zheng, Jin-Cheng
    NANOTECHNOLOGY, 2011, 22 (10)
  • [44] Nanoconfinement effects of chemically reduced graphene oxide nanoribbons on poly(vinyl chloride)
    Choe, J. H.
    Jeon, J.
    Lee, M. E.
    Wie, J. J.
    Jin, H. -J.
    Yun, Y. S.
    NANOSCALE, 2018, 10 (04) : 2025 - 2033
  • [45] Size-dependent non-linear mechanical properties of graphene nanoribbons
    Georgantzinos, S. K.
    Giannopoulos, G. I.
    Katsareas, D. E.
    Kakavas, P. A.
    Anifantis, N. K.
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (07) : 2057 - 2062
  • [46] Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons
    Damasceno, D. A.
    Mesquita, E.
    Rajapakse, R. K. N. D.
    Pavanello, R.
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2019, 15 (01) : 145 - 157
  • [47] Large-scale simulation of graphene and structural superlubricity with improved smoothed molecular dynamics method
    Wang, Shuai
    Zhao, LeiYang
    Liu, Yan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 392
  • [48] Vertical-strain-induced spin-splitting in zigzag graphene nanoribbons
    Yi, Ding
    Hou, Dong
    Li, Shaozhi
    Xie, Shijie
    NANOSCALE, 2013, 5 (19) : 9118 - 9122
  • [49] Mechanical properties of single layer graphene nanoribbons through bending experimental simulations
    Wang, Weidong
    Shen, Cuili
    Li, Shuai
    Min, Jiaojiao
    Yi, Chenglong
    AIP ADVANCES, 2014, 4 (03)
  • [50] Molecular modelling of graphene nanoribbons on the effect of porosity and oxidation on the mechanical and thermal properties
    Saenz Ezquerro, Carlos
    Laspalas, Manuel
    Garcia Aznar, Jose Manuel
    Castelar Ariza, Susana
    Chiminelli, Agustin
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (33) : 13295 - 13316