Liouville type theorems for the system of integral equations

被引:12
|
作者
Dou, Jingbo [1 ,2 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
[2] NW Univ Xian, Ctr Nonlinear Studies, Xian 710069, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Littlewood-Sobolev inequality; System of integral equations; Moving spheres method; Conformal invariance; Liouville type theorem; SEMILINEAR ELLIPTIC-EQUATIONS; HARDY-LITTLEWOOD-SOBOLEV; MOVING SPHERES; ASYMPTOTIC SYMMETRY; CRITICAL EXPONENTS; POSITIVE SOLUTIONS; R-N; CLASSIFICATION; INEQUALITIES; UNIQUENESS;
D O I
10.1016/j.amc.2010.07.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the system of integral equations in R(n) {u(x) - integral(Rn) vertical bar x-y vertical bar(a-n)u(y)(p)v(y)(q)dy, v(x) = integral(Rn) vertical bar x-y vertical bar(a-n)u(y)(q)v(y)(p)dy, where 0 < alpha < n; 1 <= p; q <= n+alpha/n-alpha. Its positive solutions are classified by developing the method of moving spheres with p+q = n+alpha/n-alpha. When p+q < n+alpha/n-alpha the nonexistence of any positive solutions is also discussed. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2586 / 2594
页数:9
相关论文
共 50 条
  • [11] LIOUVILLE THEOREMS FOR AN INTEGRAL EQUATION OF CHOQUARD TYPE
    Phuong Le
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (02) : 771 - 783
  • [12] Integral representations and Liouville theorems for solutions of periodic elliptic equations
    Kuchment, P
    JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 181 (02) : 402 - 446
  • [13] The Liouville Type Theorem for a System of Nonlinear Integral Equations on Exterior Domain
    Yin Rong
    Zhang Jihui
    Shang Xudong
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 32 (03): : 191 - 206
  • [14] Liouville theorems for Kirchhoff-type parabolic equations and system on the Heisenberg group
    Shi, Wei
    OPEN MATHEMATICS, 2023, 21 (01):
  • [15] Liouville type theorems for the system of fractional nonlinear equations in R+n
    Dai, Zhaohui
    Cao, Linfen
    Wang, Pengyan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [16] Some Liouville theorems for Henon type elliptic equations
    Wang, Chao
    Ye, Dong
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) : 1705 - 1727
  • [17] Liouville Type Theorems for Elliptic Equations with Gradient Terms
    Salomón Alarcón
    Jorge García-Melián
    Alexander Quaas
    Milan Journal of Mathematics, 2013, 81 : 171 - 185
  • [18] Liouville Type Theorems for Elliptic Equations with Gradient Terms
    Alarcon, Salomon
    Garcia-Melian, Jorge
    Quaas, Alexander
    MILAN JOURNAL OF MATHEMATICS, 2013, 81 (01) : 171 - 185
  • [19] Liouville type theorems for two elliptic equations with advections
    Anh Tuan Duong
    Nhu Thang Nguyen
    Thi Quynh Nguyen
    ANNALES POLONICI MATHEMATICI, 2019, 122 (01) : 11 - 20
  • [20] Fundamental solutions and Liouville type theorems for nonlinear integral operators
    Felmer, Patricio
    Quaas, Alexander
    ADVANCES IN MATHEMATICS, 2011, 226 (03) : 2712 - 2738