Liouville type theorems for the system of integral equations

被引:12
作者
Dou, Jingbo [1 ,2 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
[2] NW Univ Xian, Ctr Nonlinear Studies, Xian 710069, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Littlewood-Sobolev inequality; System of integral equations; Moving spheres method; Conformal invariance; Liouville type theorem; SEMILINEAR ELLIPTIC-EQUATIONS; HARDY-LITTLEWOOD-SOBOLEV; MOVING SPHERES; ASYMPTOTIC SYMMETRY; CRITICAL EXPONENTS; POSITIVE SOLUTIONS; R-N; CLASSIFICATION; INEQUALITIES; UNIQUENESS;
D O I
10.1016/j.amc.2010.07.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the system of integral equations in R(n) {u(x) - integral(Rn) vertical bar x-y vertical bar(a-n)u(y)(p)v(y)(q)dy, v(x) = integral(Rn) vertical bar x-y vertical bar(a-n)u(y)(q)v(y)(p)dy, where 0 < alpha < n; 1 <= p; q <= n+alpha/n-alpha. Its positive solutions are classified by developing the method of moving spheres with p+q = n+alpha/n-alpha. When p+q < n+alpha/n-alpha the nonexistence of any positive solutions is also discussed. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2586 / 2594
页数:9
相关论文
共 19 条
[1]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[2]   CLASSIFICATION OF POSITIVE SOLUTIONS FOR NONLINEAR DIFFERENTIAL AND INTEGRAL SYSTEMS WITH CRITICAL EXPONENTS [J].
Chen, Wenxiong ;
Li, Congming .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (04) :949-960
[3]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[4]   Classification of solutions for a system of integral equations [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :59-65
[5]  
Chen WX, 2005, DISCRETE CONT DYN-A, V12, P347
[6]   A priori estimates for prescribing scalar curvature equations [J].
Chen, WX ;
Li, CM .
ANNALS OF MATHEMATICS, 1997, 145 (03) :547-564
[7]  
GIDAS B, 1981, ADV MATH SUPPL STU A, V7, P362
[8]   Liouville type theorems for positive solutions of elliptic system in RN [J].
Guo, Yuxia ;
Liu, Jiaquan .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (02) :263-284
[9]  
Hang FB, 2007, MATH RES LETT, V14, P373
[10]  
Li CM, 1996, INVENT MATH, V123, P221, DOI 10.1007/s002220050023