Scalable synthesis of core-shell structured SiOx/nitrogen-doped carbon composite as a high-performance anode material for lithium-ion batteries

被引:144
作者
Shi, Lu [1 ,2 ,3 ]
Wang, Weikun [3 ]
Wang, Anbang [3 ]
Yuan, Keguo [3 ]
Jin, Zhaoqing [3 ]
Yang, Yusheng [3 ]
机构
[1] Xinxiang Univ, Coll Chem & Chem Engn, Xinxiang 453003, Henan, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[3] Res Inst Chem Def, Mil Power Sources Res & Dev Ctr, Beijing 100191, Peoples R China
关键词
SiOx; Core-shell structure; Polydopamine coating; Uniform nitrogen-doped carbon coating layer; Lithium-ion batteries; SI NANOPARTICLES; GRAPHENE SHEETS; POROUS SI; NANOCOMPOSITE; NITROGEN; NANOWIRES; FABRICATION; ELECTRODE; STORAGE; ALLOY;
D O I
10.1016/j.jpowsour.2016.03.111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a novel core-shell structured SiOx/nitrogen-doped carbon composite has been prepared by simply dispersing the SiOx particles, which are synthesized by a thermal evaporation method from an equimolar mixture of Si and SiO2, into the dopamine solution, followed by a carbonization process. The SiOx core is well covered by the conformal and homogeneous nitrogen-doped carbon layer from the pyrolysis of polydopamine. By contrast with the bare SiOx, the electrochemical performance of the as prepared core-shell structured SiOx/nitrogen-doped carbon composite has been improved significantly. It delivers a reversible capacity of 1514 mA h g-1 after 100 cycles at a current density of 100 mA g(-1) and 933 mA h g(-1) at 2 A g(-1), much higher than those of commercial graphite anodes. The nitrogen-doped carbon layer ensures the excellent electrochemical performance of the SiOx/C composite. In addition, since dopamine can self-polymerize and coat virtually any surface, this versatile, facile and highly efficient coating process may be widely applicable to obtain various composites with uniform nitrogen doped carbon coating layer. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:184 / 191
页数:8
相关论文
共 57 条
[1]   Improving the Stability of Nanostructured Silicon Thin Film Lithium-Ion Battery Anodes through Their Controlled Oxidation [J].
Abel, Paul R. ;
Lin, Yong-Mao ;
Celio, Hugo ;
Heller, Adam ;
Mullins, C. Buddie .
ACS NANO, 2012, 6 (03) :2506-2516
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Activated natural porous silicate for a highly promising SiOx nanostructure finely impregnated with carbon nanofibers as a high performance anode material for lithium-ion batteries [J].
Back, Chang-Keun ;
Kim, Tai-Jin ;
Choi, Nam-Soon .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (33) :13648-13654
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Hierarchically aminated graphene honeycombs for electrochemical capacitive energy storage [J].
Chen, Cheng-Meng ;
Zhang, Qiang ;
Zhao, Xiao-Chen ;
Zhang, Bingsen ;
Kong, Qing-Qiang ;
Yang, Mang-Guo ;
Yang, Quan-Hong ;
Wang, Mao-Zhang ;
Yang, Yong-Gang ;
Schloegl, Robert ;
Su, Dang Sheng .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (28) :14076-14084
[6]   Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries [J].
Cui, Li-Feng ;
Hu, Liangbing ;
Choi, Jang Wook ;
Cui, Yi .
ACS NANO, 2010, 4 (07) :3671-3678
[7]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[8]   Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries [J].
Datta, Moni Kanchan ;
Maranchi, Jeffrey ;
Chung, Sung Jae ;
Epur, Rigved ;
Kadakia, Karan ;
Jampani, Prashanth ;
Kumta, Prashant N. .
ELECTROCHIMICA ACTA, 2011, 56 (13) :4717-4723
[9]   Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries [J].
Feng, Jinkui ;
Zhang, Zhen ;
Ci, Lijie ;
Zhai, Wei ;
Ai, Qing ;
Xiong, Shenglin .
JOURNAL OF POWER SOURCES, 2015, 287 :177-183
[10]   Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life [J].
Ge, Mingyuan ;
Rong, Jiepeng ;
Fang, Xin ;
Zhou, Chongwu .
NANO LETTERS, 2012, 12 (05) :2318-2323