Broadband MEMS-Tunable High-Index-Contrast Subwavelength Grating Long-Wavelength VCSEL

被引:44
作者
Chung, Il-Sug [1 ]
Iakovlev, Vladmir [2 ]
Sirbu, Alexei [3 ]
Mereuta, Alexandru [3 ]
Caliman, Andrei [3 ]
Kapon, Eli [3 ]
Mork, Jesper [1 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn DTU Fotn, DK-2800 Lyngby, Denmark
[2] BeamExpress SA, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Lab Phys Nanostruct, CH-1015 Lausanne, Switzerland
关键词
Microelectromechanical; sensor; sub-wavelength grating; vertical-cavity surface-emitting laser; PHOTONIC CRYSTAL; CAVITY; 10-GB/S; POWER;
D O I
10.1109/JQE.2010.2047494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A widely-tunable single-mode 1.3 mu m vertical-cavity surface-emitting laser structure incorporating a microelectromechanical system-tunable high-index-contrast subwavelength grating (HCG) mirror is suggested and numerically investigated. A linear tuning range of 100 nm and a wavelength tuning efficiency of 0.203 are predicted. The large tuning range and efficiency are attributed to the incorporation of the tuning air gap as part of the optical cavity and to the use of a short cavity structure. The short cavity length can be achieved by employing a HCG design of which the reflection mechanism does not rely on resonant coupling. The absence of resonance coupling leads to a 0.59 lambda-thick penetration depth of the HCG and enables to use a 0.25 lambda-thick tuning air gap underneath the HCG. This considerably reduces the effective cavity length, leading to larger tuning range and efficiency. The basic properties of this new structure are analyzed, and shown to be explained by analytical expressions that are derived in the paper. In this context, the penetration depth of the HCG is introduced and shown to be an important characteristic length scale. Throughout the tuning wavelength range, strong single mode operation was maintained and uniform output power is expected.
引用
收藏
页码:1245 / 1253
页数:9
相关论文
共 31 条
[1]  
[Anonymous], APPL PHYS LETT
[2]   Comparison of optical VCSEL models on the simulation of oxide-confined devices [J].
Bienstman, P ;
Baets, R ;
Vukusic, J ;
Larsson, A ;
Noble, MJ ;
Brunner, M ;
Gulden, K ;
Debernardi, P ;
Fratta, L ;
Bava, GP ;
Wenzel, H ;
Klein, B ;
Conradi, O ;
Pregla, R ;
Riyopoulos, SA ;
Seurin, JPP ;
Chuang, SL .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2001, 37 (12) :1618-1631
[3]   High reflectivity air-bridge subwavelength grating reflector and Fabry-Perot cavity in AlGaAs/GaAs [J].
Bisaillon, E ;
Tan, D ;
Faraji, B ;
Kirk, AG ;
Chrowstowski, L ;
Plant, DV .
OPTICS EXPRESS, 2006, 14 (07) :2573-2582
[4]   Tunable lasers [J].
Bruce, E ;
Riezenman, MJ .
IEEE SPECTRUM, 2002, 39 (02) :35-+
[5]  
CALIMAN A, 2009, P C LAS EL QUANT EL, P1
[6]  
Chung I.-S., 2009, INT C IND PHOSPH REL
[7]   Subwavelength grating-mirror VCSEL with a thin oxide gap [J].
Chung, Il-Sung ;
Mork, Jesper ;
Gilet, Philippe ;
Chelnokov, Alexei .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (1-4) :105-107
[8]  
CHUNG IS, 2008, 10 INT C TRANSP OPT
[9]  
COLDREN LA, 1995, DIODE LASERS PHOTONI, P93
[10]  
COLDREN LA, 1995, DIODE LASERS PHOTONI, P28