Biochars from animal wastes as alternative materials to treat colored effluents containing basic red 9

被引:59
作者
Cortes, L. N. [1 ]
Druzian, S. P. [1 ]
Streit, A. F. M. [1 ]
Godinho, M. [2 ]
Perondi, D. [2 ]
Collazzo, G. C. [1 ]
Oliveira, M. L. S. [3 ,4 ]
Cadaval Jr, T. R. S. [5 ]
Dotto, G. L. [1 ]
机构
[1] Univ Fed Santa Maria, Chem Engn Dept, UFSM, Roraima Ave 1000, BR-97105900 Santa Maria, RS, Brazil
[2] UCS, 1130 Francisco Getulio Vargas St, BR-95070560 Caxias Do Sul, RS, Brazil
[3] Univ Costa, Dept Civil & Environm, Calle 58 55-66, Barranquilla 080002, Atlantico, Colombia
[4] Fac Merid IMED, BR-99070220 Passo Fundo, RS, Brazil
[5] Fundacao Univ Fed Rio Grande, Sch Chem & Food, Km 8 Italia Ave, BR-96203900 Rio Grande, RS, Brazil
关键词
Adsorption; Biochar; Bovine bone; Fish scale; Fuchsine; ACTIVATED CARBON; BONE CHAR; AQUEOUS-SOLUTION; SPIRULINA SP; AZO-DYE; ADSORPTION; PYROLYSIS; REMOVAL; ADSORBENT; OPTIMIZATION;
D O I
10.1016/j.jece.2019.103446
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bovine bones (BB) and fish scales (FS) were used as alternative precursors to produce biochars, which in turn, were applied for the removal of Basic Red 9 (BR9) from aqueous solutions. BB and FS were pyrolyzed generating a solid (biochars), a liquid (pyrolytic oils) and a gas fraction. All fractions were characterized to evaluate the pyrolysis process. The biochars presented different functional groups and a mesoporous structure with surface areas around 90 m(2)g(-1). Both biochars demonstrated potential to adsorb BR9, with maximum adsorption capacities of 49.5 (BB-biochar) and 52.3 mg g(-1) (FS-biochar). Pyrolytic oils were composed mainly by palmitic acid (BB) and imidazolidinedione (FS), which are compounds with biological and antioxidant activity. Pyrolysis of BB generated CO2 while pyrolysis of FS generated H-2. In summary, bovine bones and fish scales are promising precursors to concomitantly produce biochars with great adsorbent potential and oils with interesting characteristics.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Application of Mangifera indica (mango) seeds as a biosorbent for removal of Victazol Orange 3R dye from aqueous solution and study of the biosorption mechanism [J].
Alencar, Wagner S. ;
Acayanka, Elie ;
Lima, Eder C. ;
Royer, Betina ;
de Souza, Felipe E. ;
Lameira, Jeronimo ;
Alves, Claudio N. .
CHEMICAL ENGINEERING JOURNAL, 2012, 209 :577-588
[2]  
[Anonymous], 1938, ADSORPTION GASES MUL
[3]  
[Anonymous], 2013, D317213 ASTM INT
[4]   Influence of temperature and heating rate on the fixed bed pyrolysis of meat and bone meal [J].
Ayllon, M. ;
Aznar, M. ;
Sanchez, J. L. ;
Gea, G. ;
Arauzo, J. .
CHEMICAL ENGINEERING JOURNAL, 2006, 121 (2-3) :85-96
[5]  
Basu P, 2010, BIOMASS GASIFICATION AND PYROLYSIS: PRACTICAL DESIGN AND THEORY, P1
[6]  
Brindley G.W., 1980, CRYST STRUCT COMMUN, V5
[7]   Thermally activated carbon from bovine bone: Optimization of synthesis conditions by response surface methodology [J].
Cazetta, Andre L. ;
Azevedo, Stefani P. ;
Pezoti, Osvaldo ;
Souza, Lucas S. ;
Vargas, Alexandro M. M. ;
Paulino, Alexandre T. ;
Moraes, Juliana C. G. ;
Almeida, Vitor C. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2014, 110 :455-462
[8]  
CEN Comite Europeen de Normalisation, 2004, 143 CEN BTTF
[9]   Comparison of the structure and mechanical properties of bovine femur bone and antler of the North American elk (Cervus elaphus canadensis) [J].
Chen, P. -Y. ;
Stokes, A. G. ;
McKittrick, J. .
ACTA BIOMATERIALIA, 2009, 5 (02) :693-706
[10]   Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model [J].
Choy, KKH ;
McKay, G .
CHEMOSPHERE, 2005, 60 (08) :1141-1150