The impact of the Tumor Microenvironment on the Properties of Glioma Stem-Like Cells

被引:48
作者
Audia, Alessandra [1 ]
Conroy, Siobhan [1 ,2 ]
Glass, Rainer [3 ,4 ,5 ]
Bhat, Krishna P. L. [1 ,6 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Translat Mol Pathol, Houston, TX 77030 USA
[2] Univ Med Ctr Groningen, Dept Pathol & Med Biol, Groningen, Netherlands
[3] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Neurosurg, Neurosurg Res, Munich, Germany
[4] German Canc Consortium DKTK, Partner Site Munich, Heidelberg, Germany
[5] German Canc Res Ctr, Heidelberg, Germany
[6] Univ Texas MD Anderson Canc Ctr, Dept Neurosurg, Houston, TX 77030 USA
来源
FRONTIERS IN ONCOLOGY | 2017年 / 7卷
关键词
glioma stem-like cells; glioblastoma; microenvironment; transdifferentiation; therapy resistance; PRIMARY GLIOBLASTOMA CELLS; CHEMOTHERAPY RESISTANCE; IN-VITRO; T-CELLS; HETEROGENEITY; ASTROCYTES; EXPRESSION; MICROGLIA; PERICYTES; PATHWAY;
D O I
10.3389/fonc.2017.00143
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Glioblastoma is the most common and highly malignant primary brain tumor, and patients affected with this disease exhibit a uniformly dismal prognosis. Glioma stemlike cells (GSCs) are a subset of cells within the bulk tumor that possess self-renewal and multi-lineage differentiation properties similar to somatic stem cells. These cells also are at the apex of the cellular hierarchy and cause tumor initiation and expansion after chemo-radiation. These traits make them an attractive target for therapeutic development. Because GSCs are dependent on the brain microenvironment for their growth, and because non-tumorigenic cell types in the microenvironment can influence GSC phenotypes and treatment response, a better understanding of these cell types is needed. In this review, we provide a focused overview of the contributions from the microenvironment to GSC homing, maintenance, phenotypic plasticity, and tumor initiation. The interaction of GSCs with the vascular compartment, mesenchymal stem cells, immune system, and normal brain cell types are discussed. Studies that provide mechanistic insight into each of these GSC-microenvironment interactions are warranted in the future.
引用
收藏
页数:8
相关论文
共 94 条
[11]   Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy [J].
Biasoli, D. ;
Sobrinho, M. F. ;
da Fonseca, A. C. C. ;
de Matos, D. G. ;
Romao, L. ;
de Moraes Maciel, R. ;
Rehen, S. K. ;
Moura-Neto, V. ;
Borges, H. L. ;
Lima, F. R. S. .
ONCOGENESIS, 2014, 3 :e123-e123
[12]   Type-2 pericytes participate in normal and tumoral angiogenesis [J].
Birbrair, Alexander ;
Zhang, Tan ;
Wang, Zhong-Min ;
Messi, Maria Laura ;
Olson, John D. ;
Mintz, Akiva ;
Delbono, Osvaldo .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2014, 307 (01) :C25-C38
[13]   In Vivo Clonal Analysis Reveals Self-Renewing and Multipotent Adult Neural Stem Cell Characteristics [J].
Bonaguidi, Michael A. ;
Wheeler, Michael A. ;
Shapiro, Jason S. ;
Stadel, Ryan P. ;
Sun, Gerald J. ;
Ming, Guo-li ;
Song, Hongjun .
CELL, 2011, 145 (07) :1142-1155
[14]   Cancer Stem Cell Hierarchy in Glioblastoma Multiforme [J].
Bradshaw, Amy ;
Wickremsekera, Agadha ;
Tan, Swee T. ;
Peng, Lifeng ;
Davis, Paul F. ;
Itinteang, Tinte .
FRONTIERS IN SURGERY, 2016, 3
[15]   A perivascular niche for brain tumor stem cells [J].
Calabrese, Christopher ;
Poppleton, Helen ;
Kocak, Mehmet ;
Hogg, Twala L. ;
Fuller, Christine ;
Hamner, Blair ;
Oh, Eun Young ;
Gaber, M. Waleed ;
Finklestein, David ;
Allen, Meredith ;
Frank, Adrian ;
Bayazitov, Ildar T. ;
Zakharenko, Stanislav S. ;
Gajjar, Amar ;
Davidoff, Andrew ;
Gilbertson, Richard J. .
CANCER CELL, 2007, 11 (01) :69-82
[16]   Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like Character in PDGF-Induced Glioma Cells [J].
Charles, Nikki ;
Ozawa, Tatsuya ;
Squatrito, Massimo ;
Bleau, Anne-Marie ;
Brennan, Cameron W. ;
Hambardzumyan, Dolores ;
Holland, Eric C. .
CELL STEM CELL, 2010, 6 (02) :141-152
[17]   Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth [J].
Cheng, Lin ;
Huang, Zhi ;
Zhou, Wenchao ;
Wu, Qiulian ;
Donnola, Shannon ;
Liu, James K. ;
Fang, Xiaoguang ;
Sloan, Andrew E. ;
Mao, Yubin ;
Lathia, Justin D. ;
Min, Wang ;
McLendon, Roger E. ;
Rich, Jeremy N. ;
Bao, Shideng .
CELL, 2013, 153 (01) :139-152
[18]   Systemic T Cells Immunosuppression of Glioma Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells [J].
Domenis, Rossana ;
Cesselli, Daniela ;
Toffoletto, Barbara ;
Bourkoula, Evgenia ;
Caponnetto, Federica ;
Manini, Ivana ;
Beltrami, Antonio Paolo ;
Ius, Tamara ;
Skrap, Miran ;
Di Loreto, Carla ;
Gri, Giorgia .
PLOS ONE, 2017, 12 (01)
[19]   Immune Heterogeneity of Glioblastoma Subtypes: Extrapolation from the Cancer Genome Atlas [J].
Doucette, Tiffany ;
Rao, Ganesh ;
Rao, Arvind ;
Shen, Li ;
Aldape, Kenneth ;
Wei, Jun ;
Dziurzynski, Kristine ;
Gilbert, Mark ;
Heimberger, Amy B. .
CANCER IMMUNOLOGY RESEARCH, 2013, 1 (02) :112-122
[20]   Tumour-processed osteopontin and lactadherin drive the protumorigenic reprogramming of microglia and glioma progression [J].
Ellert-Miklaszewska, A. ;
Wisniewski, P. ;
Kijewska, M. ;
Gajdanowicz, P. ;
Pszczolkowska, D. ;
Przanowski, P. ;
Dabrowski, M. ;
Maleszewska, M. ;
Kaminska, B. .
ONCOGENE, 2016, 35 (50) :6366-6377