Symmetry of local minimizers for the three-dimensional Ginzburg-Landau functional

被引:19
|
作者
Millot, Vincent [1 ]
Pisante, Adriano [2 ]
机构
[1] Univ Paris Diderot Paris 7, CNRS, UMR Lab Jacques Louis Lions 7598, F-75005 Paris, France
[2] Univ Roma La Sapienza, Dept Math, I-00185 Rome, Italy
基金
美国国家科学基金会;
关键词
Ginzburg-Landau equation; harmonic maps; local minimizers; QUASI-HARMONIC SPHERES; RADIAL SOLUTIONS; EQUATION; MAPS; CONVERGENCE; ASYMPTOTICS; DIMENSIONS;
D O I
10.4171/JEMS/223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify nonconstant entire local minimizers of the standard Ginzburg-Landau functional for maps in H(loc)(1) (R(3); R(3)) satisfying a natural energy bound. Up to translations and rotations, such solutions of the Ginzburg-Landau system are given by an explicit solution equivariant under the action of the orthogonal group.
引用
收藏
页码:1069 / 1096
页数:28
相关论文
共 50 条