Symmetry of local minimizers for the three-dimensional Ginzburg-Landau functional

被引:19
作者
Millot, Vincent [1 ]
Pisante, Adriano [2 ]
机构
[1] Univ Paris Diderot Paris 7, CNRS, UMR Lab Jacques Louis Lions 7598, F-75005 Paris, France
[2] Univ Roma La Sapienza, Dept Math, I-00185 Rome, Italy
基金
美国国家科学基金会;
关键词
Ginzburg-Landau equation; harmonic maps; local minimizers; QUASI-HARMONIC SPHERES; RADIAL SOLUTIONS; EQUATION; MAPS; CONVERGENCE; ASYMPTOTICS; DIMENSIONS;
D O I
10.4171/JEMS/223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify nonconstant entire local minimizers of the standard Ginzburg-Landau functional for maps in H(loc)(1) (R(3); R(3)) satisfying a natural energy bound. Up to translations and rotations, such solutions of the Ginzburg-Landau system are given by an explicit solution equivariant under the action of the orthogonal group.
引用
收藏
页码:1069 / 1096
页数:28
相关论文
共 30 条
[1]   Radial solutions of the Ginzburg-Landau equation in R-N [J].
Akopian, V ;
Farina, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (06) :601-604
[2]   SINGULARITIES OF ENERGY MINIMIZING MAPS FROM THE BALL TO THE SPHERE - EXAMPLES, COUNTEREXAMPLES, AND BOUNDS [J].
ALMGREN, FJ ;
LIEB, EH .
ANNALS OF MATHEMATICS, 1988, 128 (03) :483-530
[3]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[4]  
[Anonymous], 2000, Oxford Mathematical Monographs
[5]  
[Anonymous], 1999, DIFFERENTIAL EQUATIO
[6]  
[Anonymous], 1993, COMMUN ANAL GEOM
[7]  
Bethuel F., 1994, Progress in Nonlinear Differential Equations and Their Applications, V13
[8]   HARMONIC MAPS WITH DEFECTS [J].
BREZIS, H ;
CORON, JM ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (04) :649-705
[9]   EXISTENCE AND PARTIAL REGULARITY RESULTS FOR THE HEAT-FLOW FOR HARMONIC MAPS [J].
CHEN, YM ;
STRUWE, M .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :83-103
[10]   DIRICHLET PROBLEMS FOR HEAT FLOWS OF HARMONIC MAPS IN HIGHER DIMENSIONS [J].
CHEN, YM .
MATHEMATISCHE ZEITSCHRIFT, 1991, 208 (04) :557-565