Toward Fully-Fledged Quantum and Classical Communication Over Deployed Fiber with Up-Conversion Module

被引:3
作者
Bacco, Davide [1 ]
Vagniluca, Ilaria [2 ,3 ]
Cozzolino, Daniele [1 ]
Friis, Soren M. M. [4 ]
Hogstedt, Lasse [4 ]
Giudice, Andrea [5 ]
Calonico, Davide [6 ]
Cataliotti, Francesco Saverio [3 ,7 ,8 ,9 ]
Rottwitt, Karsten [1 ]
Zavatta, Alessandro [3 ,7 ,8 ,9 ]
机构
[1] Tech Univ Denmark, Dept Photon Engn, Ctr Silicon Photon Opt Commun SPOC, DK-2800 Lyngby, Denmark
[2] Univ Naples Federico II, Dept Phys Ettore Pancini, I-80126 Naples, Italy
[3] CNR, Ist Nazl Ott CNR INO, I-50125 Florence, Italy
[4] NLIR ApS, Hirsemarken 1,1st Floor, DK-3520 Farum, Denmark
[5] Micro Photon Devices Srl, Via Antonio Stradivari 4, I-39100 Bolzano, Italy
[6] INRiM Ist Nazl Ric Metrol, I-10135 Turin, Italy
[7] Univ Firenze, LENS, Via G Sansone, I-50019 Sesto Fiorentino, Italy
[8] Univ Firenze, Dipartimento Fis & Astron, Via G Sansone, I-50019 Sesto Fiorentino, Italy
[9] QTI SRL, I-50125 Florence, Italy
基金
欧盟地平线“2020”;
关键词
frequency up-conversion; quantum communication; wavelength multiplexing; SINGLE-PHOTON DETECTORS; KEY DISTRIBUTION; ENTANGLEMENT;
D O I
10.1002/qute.202000156
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum key distribution (QKD), the distribution of quantum secured keys useful for data encryption, is expected to have a crucial impact in the next decades. However, despite the notable achievements accomplished in the last 20 years, many practical and serious challenges are limiting the full deployment of this novel quantum technology in the current telecommunication infrastructures. In particular, the co-propagation of quantum signals and high-speed data traffic within the same optical fiber is not completely resolved, due to the intrinsic noise caused by the high-intensity of the classical signals. As a consequence, current co-propagation schemes limit the amount of classical optical power in order to reduce the overall link noise. However, this ad-hoc solution restrains the range of possibilities for a large scale QKD deployment. Here, a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals is proposed and demonstrated. In addition, its performances are compared with an off-the-shelf quantum receiver, equipped with a standard single-photon detector, over different lengths of an installed fiber link. The authors' proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Advances in Silicon Quantum Photonics [J].
Adcock, Jeremy C. ;
Bao, Jueming ;
Chi, Yulin ;
Chen, Xiaojiong ;
Bacco, Davide ;
Gong, Qihuang ;
Oxenlowe, Leif K. ;
Wang, Jianwei ;
Ding, Yunhong .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2021, 27 (02)
[2]   Field trial of a three-state quantum key distribution scheme in the Florence metropolitan area [J].
Bacco, Davide ;
Vagniluca, Ilaria ;
Da Lio, Beatrice ;
Biagi, Nicola ;
Della Frera, Adriano ;
Calonico, Davide ;
Toninelli, Costanza ;
Cataliotti, Francesco S. ;
Bellini, Marco ;
Oxenlowe, Leif K. ;
Zavatta, Alessandro .
EPJ QUANTUM TECHNOLOGY, 2019, 6 (01)
[3]   Boosting the secret key rate in a shared quantum and classical fibre communication system [J].
Bacco, Davide ;
Da Lio, Beatrice ;
Cozzolino, Daniele ;
Da Ros, Francesco ;
Guo, Xueshi ;
Ding, Yunhong ;
Sasaki, Yusuke ;
Aikawa, Kazuhiko ;
Miki, Shigehito ;
Terai, Hirotaka ;
Yamashita, Taro ;
Neergaard-Nielsen, Jonas S. ;
Galili, Michael ;
Rottwitt, Karsten ;
Andersen, Ulrik L. ;
Morioka, Toshio ;
Oxenlowe, Leif K. .
COMMUNICATIONS PHYSICS, 2019, 2 (1)
[4]   Secure Quantum Key Distribution over 421 km of Optical Fiber [J].
Boaron, Alberto ;
Boso, Gianluca ;
Rusca, Davide ;
Vulliez, Cedric ;
Autebert, Claire ;
Caloz, Misael ;
Perrenoud, Matthieu ;
Gras, Gaetan ;
Bussieres, Felix ;
Li, Ming-Jun ;
Nolan, Daniel ;
Martin, Anthony ;
Zbinden, Hugo .
PHYSICAL REVIEW LETTERS, 2018, 121 (19)
[5]   Practical high-dimensional quantum key distribution with decoy states [J].
Bunandar, Darius ;
Zhang, Zheshen ;
Shapiro, Jeffrey H. ;
Englund, Dirk R. .
PHYSICAL REVIEW A, 2015, 91 (02)
[6]   Field trial of a quantum secured 10 Gb/s DWDM transmission system over a single installed fiber [J].
Choi, Iris ;
Zhou, Yu Rong ;
Dynes, James F. ;
Yuan, Zhiliang ;
Klar, Andreas ;
Sharpe, Andrew ;
Plews, Alan ;
Lucamarini, Marco ;
Radig, Christian ;
Neubert, Joerg ;
Griesser, Helmut ;
Eiselt, Michael ;
Chunnilall, Christopher ;
Lepert, Guillaume ;
Sinclair, Alastair ;
Elbers, Joerg-Peter ;
Lord, Andrew ;
Shields, Andrew .
OPTICS EXPRESS, 2014, 22 (19) :23121-23128
[7]   Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system [J].
Collins, Robert J. ;
Amiri, Ryan ;
Fujiwara, Mikio ;
Honjo, Toshimori ;
Shimizu, Kaoru ;
Tamaki, Kiyoshi ;
Takeoka, Masahiro ;
Andersson, Erika ;
Buller, Gerald S. ;
Sasaki, Masahide .
OPTICS LETTERS, 2016, 41 (21) :4883-4886
[8]   High-Dimensional Quantum Communication: Benefits, Progress, and Future Challenges [J].
Cozzolino, Daniele ;
Da Lio, Beatrice ;
Bacco, Davide ;
Oxenlowe, Leif Katsuo .
ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (12)
[9]   High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits [J].
Ding, Yunhong ;
Bacco, Davide ;
Dalgaard, Kjeld ;
Cai, Xinlun ;
Zhou, Xiaoqi ;
Rottwitt, Karsten ;
Oxenlowe, Leif Katsuo .
NPJ QUANTUM INFORMATION, 2017, 3
[10]   Quantum key distribution and 1 Gbps data encryption over a single fibre [J].
Eraerds, P. ;
Walenta, N. ;
Legre, M. ;
Gisin, N. ;
Zbinden, H. .
NEW JOURNAL OF PHYSICS, 2010, 12