Rapid rewarming causes an increase in the cerebral metabolic rate for oxygen that is temporarily unmatched by cerebral blood flow - A study during cardiopulmonary bypass in rabbits

被引:90
|
作者
Enomoto, S [1 ]
Hindman, BJ [1 ]
Dexter, F [1 ]
Smith, T [1 ]
Cutkomp, J [1 ]
机构
[1] KYOTO UNIV,FAC MED,DEPT CARDIOVASC SURG,KYOTO,JAPAN
关键词
brain; cerebral blood flow; rewarming; temperature; metabolism; flow-metabolism coupling; surgery; cardiac; cardiopulmonary bypass;
D O I
10.1097/00000542-199606000-00016
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Background: Jugular venous hemoglobin desaturation during the rewarming phase of cardiopulmonary bypass is associated with adverse neuropsychologic outcome and may indicate a pathologic mismatch between cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMR(O2)). In some studies, rapid rewarming from hypothermic cardiopulmonary bypass results in greater jugular venous hemoglobin desaturation. The authors wished to determine if rewarming rate influences the temperature dependence of CBF and CMR(O2). Methods: Anesthetized New Zealand white rabbits, cooled to 25 degrees C on cardiopulmonary bypass, were randomized to one of two rewarming groups. In the fast group (n = 9), aortic blood temperature was made normothermic within 4 min. Ln the slow group (n = 9), aortic blood temperature was made normothermic over 25 min. Cerebral blood flow (microspheres) and CMR(O2) (Fick) were determined at baseline (25 degrees C), and at brain temperatures of 28 degrees, 31 degrees, 34 degrees, and 37 degrees C during rewarming. Results: Systemic physiologic variables appeared similar beta een groups. At a brain temperature of 28 degrees C, CMR(O2) was 47% greater In the fast rewarming group than in the slow group (2.2 +/- 0.5 vs. 1.5 +/- 0.2 ml O-2 . 100 g(-1). min(-1), respectively; P = 0.01), whereas CBF did not differ (48 +/- 18 vs. 49 +/- 8 ml . 100 g(-1). min(-1), respectively; P = 0.47). Throughout rewarming, CBF increased as a function of brain temperature but was indistinguishable between groups. Cerebral metabolic rate for oxygen differences between groups decreased as brain temperatures increased, Conclusions Cerebral venous hemoglobin desaturation with rapid rewarming, is caused by an increase In CMR(O2), that is temporarily greater than the Increase in CBF, This mismatch may Indicate a transient abnormality in flow-metabolism coupling, or the effect of temperature gradients on oxygen transfer from hemoglobin to brain.
引用
收藏
页码:1392 / 1400
页数:9
相关论文
共 50 条
  • [1] PH-STAT MANAGEMENT REDUCES THE CEREBRAL METABOLIC-RATE FOR OXYGEN DURING PROFOUND HYPOTHERMIA (17-DEGREES-C) - A STUDY DURING CARDIOPULMONARY BYPASS IN RABBITS
    HINDMAN, BJ
    DEXTER, F
    CUTKOMP, J
    SMITH, T
    ANESTHESIOLOGY, 1995, 82 (04) : 983 - 995
  • [2] HYPOTHERMIC ACID-BASE MANAGEMENT DOES NOT AFFECT CEREBRAL METABOLIC-RATE FOR OXYGEN AT 27-DEGREES-C - A STUDY DURING CARDIOPULMONARY BYPASS IN RABBITS
    HINDMAN, BJ
    DEXTER, F
    CUTKOMP, J
    SMITH, T
    TINKER, JH
    ANESTHESIOLOGY, 1993, 79 (03) : 580 - 587
  • [3] CEREBRAL BLOOD-FLOW RESPONSE TO PACO2 DURING HYPOTHERMIC CARDIOPULMONARY BYPASS IN RABBITS
    HINDMAN, BJ
    FUNATSU, N
    HARRINGTON, J
    CUTKOMP, J
    DEXTER, F
    TODD, MM
    TINKER, JH
    ANESTHESIOLOGY, 1991, 75 (04) : 662 - 668
  • [4] CEREBRAL BLOOD-FLOW DECREASES WITH TIME WHEREAS CEREBRAL OXYGEN-CONSUMPTION REMAINS STABLE DURING HYPOTHERMIC CARDIOPULMONARY BYPASS IN HUMANS
    PROUGH, DS
    ROGERS, AT
    STUMP, DA
    ROY, RC
    CORDELL, AR
    PHIPPS, J
    TAYLOR, CL
    ANESTHESIA AND ANALGESIA, 1991, 72 (02) : 161 - 168
  • [5] CEREBRAL BLOOD-FLOW DURING LOW-FLOW HYPOTHERMIC CARDIOPULMONARY BYPASS IN BABOONS
    SCHWARTZ, AE
    KAPLON, RJ
    YOUNG, WL
    SISTINO, JJ
    KWIATKOWSKI, P
    MICHLER, RE
    ANESTHESIOLOGY, 1994, 81 (04) : 959 - 964
  • [6] The relation between arterial oxygen tension and cerebral blood flow during cardiopulmonary bypass
    Chow, G
    Roberts, IG
    Fallon, P
    Onoe, M
    LloydThomas, A
    Elliott, MJ
    Edwards, AD
    Kirkham, FJ
    EUROPEAN JOURNAL OF CARDIO-THORACIC SURGERY, 1997, 11 (04) : 633 - 639
  • [7] Phenylephrine increases cerebral blood flow during low-flow hypothermic cardiopulmonary bypass in baboons
    Schwartz, AE
    Minanov, O
    Stone, JG
    Adams, DC
    Sandhu, AA
    Pearson, ME
    Kwiatkowski, P
    Young, WL
    Michler, RE
    ANESTHESIOLOGY, 1996, 85 (02) : 380 - 384
  • [8] Impaired Autoregulation of Cerebral Blood Flow During Rewarming from Hypothermic Cardiopulmonary Bypass and Its Potential Association with Stroke
    Joshi, Brijen
    Brady, Kenneth
    Lee, Jennifer
    Easley, Blaine
    Panigrahi, Rabi
    Smielewski, Peter
    Czosnyka, Marek
    Hogue, Charles W., Jr.
    ANESTHESIA AND ANALGESIA, 2010, 110 (02) : 321 - 328
  • [9] Effect of rewarming speed during hypothermic cardiopulmonary bypass on cerebral pressure-flow relation
    Diephuis, JC
    Balt, J
    van Dijk, D
    Moons, KGM
    Knape, JTA
    ACTA ANAESTHESIOLOGICA SCANDINAVICA, 2002, 46 (03) : 283 - 288
  • [10] PULSATILE VERSUS NONPULSATILE FLOW - NO DIFFERENCE IN CEREBRAL BLOOD-FLOW OR METABOLISM DURING NORMOTHERMIC CARDIOPULMONARY BYPASS IN RABBITS
    HINDMAN, BJ
    DEXTER, F
    SMITH, T
    CUTKOMP, J
    ANESTHESIOLOGY, 1995, 82 (01) : 241 - 250