A multiple hyper-ellipsoidal subclass model for an evolutionary classifier

被引:7
作者
Zhu, QM [1 ]
Cai, Y [1 ]
Liu, LZ [1 ]
机构
[1] Univ Nebraska, Dept Comp Sci, Omaha, NE 68182 USA
关键词
pattern classification; evolutionary classifier; clustering; hyper-ellipsoidal subclass; supervised learning;
D O I
10.1016/S0031-3203(00)00017-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A pattern classification scheme in which the classifier is able to grow and evolve during the operation process is presented. The evolutionary property of the classifier is made possible by modeling the pattern vectors in multiple hyper-ellipsoidal subclass distributions. Learning of the classifier takes place at the subclass levels only. This property allows the classifier to retain its previously learned patterns while accepting and learning new pattern classes. The classifier is suitable to operate in dynamical environments where continuous updating of the pattern class distributions is needed. (C) 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:547 / 560
页数:14
相关论文
共 18 条
[1]   MULTIPLE SUBCLASS PATTERN-RECOGNITION - A MAXIMIN CORRELATION APPROACH [J].
AVIITZHAK, HI ;
VANMIEGHEM, JA ;
RUB, L .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (04) :418-431
[2]   MODEL-BASED CLUSTER-ANALYSIS [J].
BANERJEE, S ;
ROSENFELD, A .
PATTERN RECOGNITION, 1993, 26 (06) :963-974
[3]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[4]  
BENNETT KP, 1992, OPTIMIZATION METHODS, V1, P23, DOI DOI 10.1080/10556789208805504
[5]   CLUSTERING OF CLUSTERS [J].
CHAN, KP ;
CHEUNG, YS .
PATTERN RECOGNITION, 1992, 25 (02) :211-217
[6]   GROWING CELL STRUCTURES - A SELF-ORGANIZING NETWORK FOR UNSUPERVISED AND SUPERVISED LEARNING [J].
FRITZKE, B .
NEURAL NETWORKS, 1994, 7 (09) :1441-1460
[7]  
HANS G, 1991, IEEE T NEURAL NETWOR, V2, P366
[8]   EFFICIENT FUZZY PARTITION OF PATTERN SPACE FOR CLASSIFICATION PROBLEMS [J].
ISHIBUCHI, H ;
NOZAKI, K ;
TANAKA, H .
FUZZY SETS AND SYSTEMS, 1993, 59 (03) :295-304
[9]   DISCRIMINATIVE LEARNING FOR MINIMUM ERROR CLASSIFICATION [J].
JUANG, BH ;
KATAGIRI, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (12) :3043-3054
[10]   Construction of class regions by a randomized algorithm: A randomized subclass method [J].
Kudo, M ;
Yanagi, S ;
Shimbo, M .
PATTERN RECOGNITION, 1996, 29 (04) :581-588