Harmonic Functions, Conjugate Harmonic Functions and the Hardy Space H1 in the Rational Dunkl Setting

被引:0
作者
Anker, Jean-Philippe [1 ,2 ]
Dziubanski, Jacek [3 ]
Hejna, Agnieszka [3 ]
机构
[1] Univ Tours, Univ Orleans, Inst Denis Poisson, UMR 7013, BP 6759, F-45067 Orleans 2, France
[2] CNRS, BP 6759, F-45067 Orleans 2, France
[3] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
关键词
Rational Dunkl theory; Hardy spaces; Cauchy-Riemann equations; Riesz transforms; Maximal operators; SELF-ADJOINT OPERATORS;
D O I
10.1007/s00041-019-09666-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we extend the theory of the classical Hardy space H-1 to the rational Dunkl setting. Specifically, let Delta be the Dunkl Laplacian on a Euclidean space R-N. On the half-space R+ x R-N, we consider systems of conjugate (partial derivative(2)(t) + Delta(x))-harmonic functions satisfying an appropriate uniform L-1 condition. We prove that the boundary values of such harmonic functions, which constitute the real Hardy space H-Delta(1), can be characterized in several different ways, namely by means of atoms, Riesz transforms, maximal functions or Littlewood-Paley square functions.
引用
收藏
页码:2356 / 2418
页数:63
相关论文
共 37 条
[1]  
Amri B., 2012, Ann. Math. Blaise Pascal, V19, P247, DOI [10.5802/ambp.312, DOI 10.5802/AMBP.312]
[2]   Dunkl-Schrodinger Operators [J].
Amri, Bechir ;
Hammi, Amel .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) :1033-1058
[3]  
Anker JP, 2015, CONSTR APPROX, V42, P93, DOI 10.1007/s00365-014-9254-2
[4]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[5]   On Hardy spaces associated with Bessel operators [J].
Betancor, Jorge J. ;
Dziubanski, Jacek ;
Torrea, Jose Luis .
JOURNAL D ANALYSE MATHEMATIQUE, 2009, 107 :195-219
[6]   MAXIMAL FUNCTION CHARACTERIZATION OF CLASS HP [J].
BURKHOLDER, DL ;
GUNDY, RF ;
SILVERSTEIN, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 157 (JUN) :137-+
[7]   SINGULAR INTEGRAL CHARACTERIZATIONS OF HARDY-SPACES ON HOMOGENEOUS GROUPS [J].
CHRIST, M ;
GELLER, D .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (03) :547-598
[8]   SOME NEW FUNCTION-SPACES AND THEIR APPLICATIONS TO HARMONIC-ANALYSIS [J].
COIFMAN, RR ;
MEYER, Y ;
STEIN, EM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 62 (02) :304-335
[9]   EXTENSIONS OF HARDY SPACES AND THEIR USE IN ANALYSIS [J].
COIFMAN, RR ;
WEISS, G .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) :569-645
[10]  
COIFMAN RR, 1974, STUD MATH, V51, P269