Convergence of nonlinear Schrodinger-Poisson systems to the compressible Euler equations

被引:24
作者
Jüngel, A
Wang, S
机构
[1] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
[2] Univ Vienna, Math Inst, Vienna, Austria
[3] Henan Univ, Dept Math, Kaifeng, Peoples R China
关键词
bipolar defocusing nonlinear Schrodinger-Poisson systems; compressible Euler equations; semi-classical limit; quasineutral limit; Wigner measure;
D O I
10.1081/PDE-120021184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The combined semi-classical and quasineutral limit in the bipolar defocusing nonlinear Schrodinger-Poisson system in the whole space is proven. The electron and current densities, defined by the solution of the Schrodinger Poisson system, converge to the solution of the compressible Euler equation with nonlinear pressure. The corresponding Wigner function of the Schrodinger Poisson system converges to a solution of a nonlinear Vlasov equation. The proof of these results is based On estimates of a modulated energy functional and on the Wigner measure method.
引用
收藏
页码:1005 / 1022
页数:18
相关论文
共 36 条
[1]  
[Anonymous], 1985, LEHRBUCH THEORETISCH
[2]  
[Anonymous], COMPRESSIBLE FLUID F
[3]  
BORGAIN J, 1999, GLOBAL SOLUTIONS NON
[4]   Convergence of the Vlasov-Poisson system to the incompressible Euler equations [J].
Brenier, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (3-4) :737-754
[5]   THE 3-DIMENSIONAL WIGNER-POISSON PROBLEM - EXISTENCE, UNIQUENESS AND APPROXIMATION [J].
BREZZI, F ;
MARKOWICH, PA .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1991, 14 (01) :35-61
[6]  
CHEMIN J., 1990, Asymp. Anal., V3, P215
[7]  
EVANS LC, 1990, WEAK CONVERGENCE MAT
[8]   The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model [J].
Gasser, I ;
Levermore, CD ;
Markowich, PA ;
Schmeiser, C .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2001, 12 :497-512
[9]   Quasi-neutral limit of a nonlinear drift diffusion model for semiconductors [J].
Gasser, I ;
Hsiao, L ;
Markowich, PA ;
Wang, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 268 (01) :184-199
[10]  
Gasser I, 1997, ASYMPTOTIC ANAL, V14, P97