DSGMFFN: Deepest semantically guided multi-scale feature fusion network for automated lesion segmentation in ABUS images

被引:10
|
作者
Cheng, Zhanyi [1 ]
Li, Yanfeng [1 ]
Chen, Houjin [1 ]
Zhang, Zilu [1 ]
Pan, Pan [1 ]
Cheng, Lin [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[2] Peking Univ, Ctr Breast, Peoples Hosp, Beijing, Peoples R China
关键词
Automated breast ultrasound (ABUS); Attention mechanism; Multi-scale feature fusion; 2D medical image segmentation;
D O I
10.1016/j.cmpb.2022.106891
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and Objective: Automated breast ultrasound (ABUS) imaging technology has been widely used in clinical diagnosis. Accurate lesion segmentation in ABUS images is essential in computer-aided diagnosis (CAD) systems. Although deep learning-based approaches have been widely employed in medical image analysis, the large variety of lesions and the imaging interference make ABUS lesion segmentation challenging.Methods: In this paper, we propose a novel deepest semantically guided multi-scale feature fusion network (DSGMFFN) for lesion segmentation in 2D ABUS slices. In order to cope with the large variety of lesions, a deepest semantically guided decoder (DSGNet) and a multi-scale feature fusion model (MFFM) are designed, where the deepest semantics is fully utilized to guide the decoding and feature fusion. That is, the deepest information is given the highest weight in the feature fusion process, and participates in every decoding stage. Aiming at the challenge of imaging interference, a novel mixed attention mechanism is developed, integrating spatial self-attention and channel self-attention to obtain the correlation among pixels and channels to highlight the lesion region.Results: The proposed DSGMFFN is evaluated on 3742 slices of 170 ABUS volumes. The experimental result indicates that DSGMFFN achieves 84.54% and 73.24% in Dice similarity coefficient (DSC) and intersection over union (IoU), respectively.Conclusions: The proposed method shows better performance than the state-of-the-art methods in ABUS lesion segmentation. Incorrect segmentation caused by lesion variety and imaging interference in ABUS images can be alleviated.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Multi-Scale Feature Fusion Based Lightweight Vehicle Target Detection Network on Aerial Optical Images
    Yu, Chengrui
    Jiang, Xiaonan
    Wu, Fanlu
    Fu, Yao
    Pei, Junyan
    Zhang, Yu
    Li, Xiangzhi
    Fu, Tianjiao
    REMOTE SENSING, 2024, 16 (19)
  • [42] Water Segmentation for Unmanned Ship Navigation Based on Multi-Scale Feature Fusion
    Han, Xin
    Yuan, Yifeng
    Zhong, Jingzhi
    Deng, Junlin
    Wu, Ning
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [43] A Road Crack Segmentation Method Based on Transformer and Multi-Scale Feature Fusion
    Xu, Yang
    Xia, Yonghua
    Zhao, Quai
    Yang, Kaihua
    Li, Qiang
    ELECTRONICS, 2024, 13 (12)
  • [44] Attentional single-shot network with multi-scale feature fusion for object detection in aerial images
    Wang, Yusheng
    Wang, Hongzhang
    Tang, Eryong
    Liu, Ye
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4754 - 4758
  • [45] Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network
    Jiang, Yun
    Cao, Simin
    Tao, Shengxin
    Zhang, Hai
    IEEE ACCESS, 2020, 8 : 122811 - 122825
  • [46] Multi-Scale Spatiotemporal Feature Fusion Network for Video Saliency Prediction
    Zhang, Yunzuo
    Zhang, Tian
    Wu, Cunyu
    Tao, Ran
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4183 - 4193
  • [47] Multi-Scale Attentive Feature Fusion Network for Single Image Dehazing
    Zhang, Chenxi
    Wu, Chunming
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [48] Deep Convolutional Neural Network With a Multi-Scale Attention Feature Fusion Module for Segmentation of Multimodal Brain Tumor
    He, Xueqin
    Xu, Wenjie
    Yang, Jane
    Mao, Jianyao
    Chen, Sifang
    Wang, Zhanxiang
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [49] BFMNet: Bilateral feature fusion network with multi-scale context aggregation for real-time semantic segmentation
    Liu, Jin
    Zhang, Fangyu
    Zhou, Ziyin
    Wang, Jiajun
    NEUROCOMPUTING, 2023, 521 : 27 - 40
  • [50] Lightweight multi-scale attention-guided network for real-time semantic segmentation
    Hu, Xuegang
    Liu, Yuanjing
    IMAGE AND VISION COMPUTING, 2023, 139