KARPINSKA'S PARADOX IN DIMENSION 3

被引:17
作者
Bergweiler, Walter [1 ]
机构
[1] Univ Kiel, D-24098 Kiel, Germany
关键词
LAMBDA-EXP Z; HAUSDORFF DIMENSION; EXPONENTIAL MAPS; FINITE-ORDER; JULIA SETS; DYNAMICS; POINTS; MAPPINGS; HAIRS; BASINS;
D O I
10.1215/00127094-2010-047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was proved by Devaney and Krych, by McMullen, and by Karpinska that, for 0 < lambda < 1/e, the Julia set of lambda e(z) is an uncountable union of pairwise disjoint simple curves tending to infinity, and the Hausdorlf dimension of this set is 2, but the set of curves without endpoints has Hausdorff dimension 1. We show that these results have 3-dimensional analogues when the exponential function is replaced by a quasi-regular self-map of R(3) introduced by Zorich.
引用
收藏
页码:599 / 630
页数:32
相关论文
共 41 条
[1]   Trees and hairs for some hyperbolic entire maps of finite order [J].
Baranski, Krzysztof .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (01) :33-59
[2]   Dimension properties of the boundaries of exponential basins [J].
Baranski, Krzysztof ;
Karpinska, Boguslawa ;
Zdunik, Anna .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 :210-220
[3]   Hausdorff dimension of hairs and ends for entire maps of finite order [J].
Baranski, Krzysztof .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 :719-737
[4]  
BEARDON AF, 1991, GRAD TEXTS MATH, V132
[5]   ITERATION OF MEROMORPHIC FUNCTIONS [J].
BERGWEILER, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :151-188
[6]  
Bergweiler W, 2009, P AM MATH SOC, V137, P641
[7]  
Devaney R.L., 1984, ERGOD THEOR DYN SYST, V4, P35
[8]   UNIFORMIZATION OF ATTRACTING BASINS FOR EXPONENTIAL MAPS [J].
DEVANEY, RL ;
GOLDBERG, LR .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :253-266
[9]  
DEVANEY RL, 1986, ERGOD THEOR DYN SYST, V6, P489
[10]  
DEVANEY RL, 2010, HDB DYNAMICAL SYSTEM, V3, P125