Discrete Orthogonal Polynomials with Hypergeometric Weights and Painleve VI

被引:13
作者
Filipuk, Galina [1 ]
Van Assche, Walter [2 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
[2] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B,Box 2400, BE-3001 Leuven, Belgium
关键词
discrete orthogonal polynomials; hypergeometric weights; discrete Painleve equations; Painleve VI; RECURRENCE COEFFICIENTS; EQUATIONS;
D O I
10.3842/SIGMA.2018.088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the recurrence coefficients of discrete orthogonal polynomials on the non-negative integers with hypergeometric weights and show that they satisfy a system of non-linear difference equations and a non-linear second order differential equation in one of the parameters of the weights. The non-linear difference equations form a pair of discrete Painleve equations and the differential equation is the sigma-form of the sixth Painleve equation. We briefly investigate the asymptotic behavior of the recurrence coefficients as n -> infinity using the discrete Painleve equations.
引用
收藏
页数:19
相关论文
共 50 条
[31]   Hypergeometric polynomials are optimal [J].
Bogdanov, D., V ;
Sadykov, T. M. .
MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) :373-390
[32]   The Toda and Painleve Systems Associated with Semiclassical Matrix-Valued Orthogonal Polynomials of Laguerre Type [J].
Cafasso, Mattia ;
De La Iglesia, Manuel D. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[33]   The Fourier extension method and discrete orthogonal polynomials on an arc of the circle [J].
Geronimo, J. S. ;
Liechty, Karl .
ADVANCES IN MATHEMATICS, 2020, 365
[34]   Stokes phenomena in discrete Painleve I [J].
Joshi, N. ;
Lustri, C. J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2177)
[35]   A unified construction of all the hypergeometric and basic hypergeometric families of orthogonal polynomial sequences [J].
Verde-Star, Luis .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 627 :242-274
[36]   An ergodic study of Painleve VI [J].
Iwasaki, Katsunori ;
Uehara, Takato .
MATHEMATISCHE ANNALEN, 2007, 338 (02) :295-345
[37]   Differential equations for the recurrence coefficients of semiclassical orthogonal polynomials and their relation to the Painleve equations via the geometric approach [J].
Dzhamay, Anton ;
Filipuk, Galina ;
Stokes, Alexander .
STUDIES IN APPLIED MATHEMATICS, 2022, 148 (04) :1656-1702
[38]   Riemann-Hilbert Problem for the Matrix Laguerre Biorthogonal Polynomials: The Matrix Discrete Painleve IV [J].
Branquinho, Amilcar ;
Moreno, Ana Foulquie ;
Fradi, Assil ;
Manas, Manuel .
MATHEMATICS, 2022, 10 (08)
[39]   Hahn polynomials for hypergeometric distribution [J].
Iliev, Plamen ;
Xu, Yuan .
ADVANCES IN APPLIED MATHEMATICS, 2022, 139
[40]   Pearson equations for discrete orthogonal polynomials: III—Christoffel and Geronimus transformations [J].
Manuel Mañas .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116