A discrete spectral problem and related hierarchy of discrete Hamiltonian lattice equations

被引:0
|
作者
Xu Xi-Xiang [1 ]
Cao Wei-Li
机构
[1] Shandong Univ Sci & Technol, Coll Sci, Qingdao 266510, Peoples R China
[2] Shanghai Univ Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
关键词
lattice soliton equation; zero curvature representation; Hamiltonian structure; Lionville integrability; INTEGRABLE SYMPLECTIC MAP; SYSTEMS; SYMMETRIES;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.
引用
收藏
页码:193 / 198
页数:6
相关论文
共 50 条