EXISTENCE AND DECAY OF SOLUTIONS FOR A HIGHER-ORDER VISCOELASTIC WAVE EQUATION WITH LOGARITHMIC NONLINEARITY

被引:5
作者
Piskin, Erhan [1 ]
Irkil, Nazli [1 ]
机构
[1] Dicle Univ, Dept Math, Diyarbakir, Turkey
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2021年 / 70卷 / 01期
关键词
Decay; existence; logarithmic nonlinearity;
D O I
10.31801/cfsuasmas.718432
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this paper is to study for the local existence and decay estimates results for a high-order viscoelastic wave equation with logarithmic nonlinearity. We obtain several results: Firstly, by using Faedo-Galerkin method and a logaritmic Sobolev inequality, we proved local existence of solutions. Later, we proved general decay results of solutions.
引用
收藏
页码:300 / 319
页数:20
相关论文
共 16 条
[1]  
Adams A. R., 2003, PURE APPL MATH, V140
[2]   Well-posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity [J].
Al-Gharabli, Mohammad M. ;
Guesmia, Aissa ;
Messaoudi, Salim A. .
APPLICABLE ANALYSIS, 2020, 99 (01) :50-74
[3]   Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term [J].
Al-Gharabli, Mohammad M. ;
Messaoudi, Salim A. .
JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (01) :105-125
[4]   The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term\ [J].
Al-Gharabli, Mohammad M. ;
Messaoudi, Salim A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (02) :1114-1128
[5]  
[Anonymous], 1999, Optimisation and Calculus of Variations, DOI DOI 10.1051/COCV:1999116
[6]   One-dimensional Klein-Gordon equation with logarithmic nonlinearities [J].
Bartkowski, Konrad ;
Gorka, Przemyslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
[7]  
BIALYNICKIBIRULA I, 1975, B ACAD POL SCI SMAP, V23, P461
[8]  
Cazenave T., 1980, ANN FACULT SCI TOULO, P21
[9]  
De Martino S, 2003, EUROPHYS LETT, V63, P472, DOI 10.1209/epl/i2003-00547-6
[10]  
Górka P, 2009, ACTA PHYS POL B, V40, P59