Mixed convective non-steady 3-dimensional micropolar fluid flow at a stagnation point

被引:16
作者
Takhar, HS [1 ]
Agarwal, RS
Bhargava, R
Jain, S
机构
[1] Univ Manchester, Sch Engn, Manchester M13 9PL, Lancs, England
[2] Univ Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
关键词
Differential Equation; Finite Element Method; Fluid Flow; Stagnation Point; Three Dimensional Flow;
D O I
10.1007/s002310050213
中图分类号
O414.1 [热力学];
学科分类号
摘要
The problem of mixed convective non-steady three dimensional flow of a micropolar fluid near the stagnation point of a blunt nosed body has been discussed. The governing set of differential equations are solved using the Finite Element Method. The velocity and microrotation distribution are shown graphically to depend upon four parameters namely the micropolar parameter, Grashof number, buoyancy parameter and the degree of acceleration. The conclusions are quite interesting from the application point of view.
引用
收藏
页码:443 / 448
页数:6
相关论文
共 9 条
[1]   FINITE-ELEMENT SOLUTION OF NONSTEADY 3-DIMENSIONAL MICROPOLAR FLUID-FLOW AT A STAGNATION-POINT [J].
AGARWAL, RS ;
BHARGAVA, R ;
BALAJI, AVS .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1990, 28 (08) :851-857
[2]  
CHEUNG EHW, 1971, J APPL MECH, V38, P282
[3]  
ERINGEN AC, 1966, J MATH MECH, V16, P1
[4]   COMBINED FORCED AND FREE-CONVECTION IN MICROPOLAR BOUNDARY-LAYER FLOW ON A VERTICAL FLAT-PLATE [J].
GORLA, RSR .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1988, 26 (04) :385-391
[5]  
KUMARI M, 1988, INT J ENG SCI, V22, P755
[6]  
Peddieson J, 1970, RECENT ADV ENGNG SCI, V5, P405, DOI DOI 10.1155/2010/627475
[7]  
Poots G., 1964, INT J HEAT MASS TRAN, V7, P863, DOI DOI 10.1016/0017-9310(64)90143-7
[8]  
Reddy J.N., 1985, An introduction to the finite element method
[9]   NONSTEADY STAGNATION-POINT FLOW [J].
WILLIAMS, JC .
AIAA JOURNAL, 1968, 6 (12) :2417-&