Attosecond clocking of correlations between Bloch electrons

被引:37
作者
Freudenstein, J. [1 ]
Borsch, M. [2 ]
Meierhofer, M. [1 ]
Afanasiev, D. [1 ]
Schmid, C. P. [1 ]
Sandner, F. [1 ]
Liebich, M. [1 ]
Girnghuber, A. [1 ]
Knorr, M. [1 ]
Kira, M. [2 ]
Huber, R. [1 ]
机构
[1] Univ Regensburg, Dept Phys, Regensburg, Germany
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
PHOTOEMISSION; MONOLAYER; MATTER; LIGHT;
D O I
10.1038/s41586-022-05190-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Delocalized Bloch electrons and the low-energy correlations between them determine key optical(1), electronic(2) and entanglement(3) functionalities of solids, all the way through to phase transitions(4,5). To directly capture how many-body correlations affect the actual motion of Bloch electrons, subfemtosecond (1 fs = 10(-15) s) temporal precision(6-15) is desirable. Yet, probing with attosecond (1 as = 10(-18) s) high-energy photons has not been energy-selective enough to resolve the relevant millielectronvolt-scale interactions of electrons(1-5,16,17) near the Fermi energy. Here, we use multi-terahertz light fields to force electron-hole pairs in crystalline semiconductors onto closed trajectories, and clock the delay between separation and recollision with 300 as precision, corresponding to 0.7% of the driving field's oscillation period. We detect that strong Coulomb correlations emergent in atomically thin WSe2 shift the optimal timing of recollisions by up to 1.2 +/- 0.3 fs compared to the bulk material. A quantitative analysis with quantum-dynamic many-body computations in a Wigner-function representation yields a direct and intuitive view on how the Coulomb interaction, non-classical aspects, the strength of the driving field and the valley polarization influence the dynamics. The resulting attosecond chronoscopy of delocalized electrons could revolutionize the understanding of unexpected phase transitions and emergent quantum-dynamic phenomena for future electronic, optoelectronic and quantum-information technologies.
引用
收藏
页码:290 / +
页数:20
相关论文
共 49 条
  • [1] Quantum droplets of electrons and holes
    Almand-Hunter, A. E.
    Li, H.
    Cundiff, S. T.
    Mootz, M.
    Kira, M.
    Koch, S. W.
    [J]. NATURE, 2014, 506 (7489) : 471 - 475
  • [2] Basov DN, 2017, NAT MATER, V16, P1077, DOI [10.1038/NMAT5017, 10.1038/nmat5017]
  • [3] Electrodynamics of correlated electron materials
    Basov, D. N.
    Averitt, Richard D.
    van der Marel, Dirk
    Dressel, Martin
    Haule, Kristjan
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (02) : 471 - 541
  • [4] Super-resolution lightwave tomography of electronic bands in quantum materials
    Borsch, M.
    Schmid, C. P.
    Weigl, L.
    Schlauderer, S.
    Hofmann, N.
    Lange, C.
    Steiner, J. T.
    Koch, S. W.
    Huber, R.
    Kira, M.
    [J]. SCIENCE, 2020, 370 (6521) : 1204 - 1207
  • [5] Unconventional superconductivity in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Fang, Shiang
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 43 - +
  • [6] Attosecond spectroscopy in condensed matter
    Cavalieri, A. L.
    Mueller, N.
    Uphues, Th.
    Yakovlev, V. S.
    Baltuska, A.
    Horvath, B.
    Schmidt, B.
    Bluemel, L.
    Holzwarth, R.
    Hendel, S.
    Drescher, M.
    Kleineberg, U.
    Echenique, P. M.
    Kienberger, R.
    Krausz, F.
    Heinzmann, U.
    [J]. NATURE, 2007, 449 (7165) : 1029 - 1032
  • [7] Attosecond physics at the nanoscale
    Ciappina, M. F.
    Perez-Hernandez, J. A.
    Landsman, A. S.
    Okell, W. A.
    Zherebtsov, S.
    Foerg, B.
    Schoetz, J.
    Seiffert, L.
    Fennel, T.
    Shaaran, T.
    Zimmermann, T.
    Chacon, A.
    Guichard, R.
    Zaier, A.
    Tisch, J. W. G.
    Marangos, J. P.
    Witting, T.
    Braun, A.
    Maier, S. A.
    Roso, L.
    Krueger, M.
    Hommelhoff, P.
    Kling, M. F.
    Krausz, F.
    Lewenstein, M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2017, 80 (05)
  • [8] Reconstruction of Bloch wavefunctions of holes in a semiconductor
    Costello, J. B.
    O'Hara, S. D.
    Wu, Q.
    Valovcin, D. C.
    Pfeiffer, L. N.
    West, K. W.
    Sherwin, M. S.
    [J]. NATURE, 2021, 599 (7883) : 57 - +
  • [9] The 2017 terahertz science and technology roadmap
    Dhillon, S. S.
    Vitiello, M. S.
    Linfield, E. H.
    Davies, A. G.
    Hoffmann, Matthias C.
    Booske, John
    Paoloni, Claudio
    Gensch, M.
    Weightman, P.
    Williams, G. P.
    Castro-Camus, E.
    Cumming, D. R. S.
    Simoens, F.
    Escorcia-Carranza, I.
    Grant, J.
    Lucyszyn, Stepan
    Kuwata-Gonokami, Makoto
    Konishi, Kuniaki
    Koch, Martin
    Schmuttenmaer, Charles A.
    Cocker, Tyler L.
    Huber, Rupert
    Markelz, A. G.
    Taylor, Z. D.
    Wallace, Vincent P.
    Zeitler, J. Axel
    Sibik, Juraj
    Korter, Timothy M.
    Ellison, B.
    Rea, S.
    Goldsmith, P.
    Cooper, Ken B.
    Appleby, Roger
    Pardo, D.
    Huggard, P. G.
    Krozer, V.
    Shams, Haymen
    Fice, Martyn
    Renaud, Cyril
    Seeds, Alwyn
    Stoehr, Andreas
    Naftaly, Mira
    Ridler, Nick
    Clarke, Roland
    Cunningham, John E.
    Johnston, Michael B.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (04)
  • [10] Ab initio tight-binding Hamiltonian for transition metal dichalcogenides
    Fang, Shiang
    Defo, Rodrick Kuate
    Shirodkar, Sharmila N.
    Lieu, Simon
    Tritsaris, Georgios A.
    Kaxiras, Efthimios
    [J]. PHYSICAL REVIEW B, 2015, 92 (20)