The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating

被引:96
作者
Zhou, Xue [1 ]
Xie, Ye [1 ]
Deng, Yuanfu [1 ,2 ]
Qin, Xusong [2 ]
Chen, Guohua [2 ,3 ]
机构
[1] S China Univ Technol, Sch Chem & Chem Engn, Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou 510640, Guangdong, Peoples R China
[2] Guangzhou HKUST Fok Ying Tung Res Inst, Ctr Green Prod & Proc Technol, Guangzhou 511458, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Chem & Biomol Engn, Kowloon, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
HYDROTHERMAL SYNTHESIS; LITHIUM; LIFEPO4; FE; MICROSPHERES; LIMNPO4; NANOMATERIALS; GRAPHENE; DEFECTS; RAMAN;
D O I
10.1039/c4ta05431h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rate performance of LiMnPO4-based materials is further improved via synergistic strategies including a surfactant-assisted solid state method, Fe-substitution and carbon-coating. The surfactant-assisted solid state strategy effectively decreases the primary particle size of the cathode material, which can greatly shorten the diffusion distance of lithium ions. The Fe-substitution improves the effectiveness of Li+ insertion/extraction reactions in the solid phase. The uniform carbon coating layer and the conductive networks provided by the carbon between the nanoparticles ensure the continuous conductivity by the nanoparticles. As a consequence of the synergistic effects, the as prepared LiFe0.5Mn0.5PO4 sample with 6.10 wt% carbon exhibits high specific capacities and superior rate performance with discharge capacities of 155.0, 140.9 and 121 mA h g(-1) at 0.1, 1 and 5 C (1 C = 170 mA g(-1)), respectively. Meanwhile, it shows stable cycling stability at both room temperature (25 degrees C, 94.8% and 90.8% capacity retention after 500 cycles at 1 and 5 C rates, respectively) and elevated temperature (55 degrees C, 89.2% capacity retention after 300 cycles at 5 C rate). This material may have great potential application in advanced Li-ion batteries.
引用
收藏
页码:996 / 1004
页数:9
相关论文
共 47 条
[1]   Structure and insertion properties of disordered and ordered LN0.5Mn1.5O4 spinels prepared by wet chemistry [J].
Amdouni, N. ;
Zaghib, K. ;
Gendron, F. ;
Mauger, A. ;
Julien, C. M. .
IONICS, 2006, 12 (02) :117-126
[2]   LiMnPO4 - A next generation cathode material for lithium-ion batteries [J].
Aravindan, Vanchiappan ;
Gnanaraj, Joe ;
Lee, Yun-Sung ;
Madhavi, Srinivasan .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3518-3539
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]  
[白莹 Bai Ying], 2003, [光散射学报, Chinese Journal of Light Scattering], V15, P231
[5]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[6]   Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1) [J].
Burba, CM ;
Frech, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1032-A1038
[7]   Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries [J].
Chen, Rongrong ;
Wu, Yixiong ;
Kong, Xiang Yang .
JOURNAL OF POWER SOURCES, 2014, 258 :246-252
[8]   The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes [J].
Cho, Yung-Da ;
Fey, George Ting-Kuo ;
Kao, Hsien-Ming .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :256-262
[9]   LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode [J].
Choi, Daiwon ;
Wang, Donghai ;
Bae, In-Tae ;
Xiao, Jie ;
Nie, Zimin ;
Wang, Wei ;
Viswanathan, Vilayanur V. ;
Lee, Yun Jung ;
Zhang, Ji-Guang ;
Graff, Gordon L. ;
Yang, Zhenguo ;
Liu, Jun .
NANO LETTERS, 2010, 10 (08) :2799-2805
[10]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921