Metal-Nitrogen-Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design

被引:321
|
作者
Shi, Zhangsheng [1 ]
Yang, Wenqing [1 ]
Gu, Yuantong [1 ,3 ]
Liao, Ting [1 ,3 ]
Sun, Ziqi [2 ,3 ]
机构
[1] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol, Sch Chem & Phys, Brisbane, Qld 4000, Australia
[3] Queensland Univ Technol, QUT Ctr Mat Sci, Brisbane, Qld 4000, Australia
基金
澳大利亚研究理事会;
关键词
biological reactions; catalytic activity-d-band center correlation; design strategies; metal-nitrogen-doped carbon materials; sustainable fuel generation; synergistic effects; OXYGEN REDUCTION REACTION; FE-N-C; SINGLE-ATOM CATALYSTS; ATOMICALLY DISPERSED IRON; ACTIVE-SITES; CO2; REDUCTION; POROUS CARBON; HYDROGEN EVOLUTION; ELECTRONIC-STRUCTURE; CODOPED GRAPHENE;
D O I
10.1002/advs.202001069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a typical class of single-atom catalysts (SACs) possessing prominent advantages of high reactivity, high selectivity, high stability, and maximized atomic utilization, emerging metal-nitrogen-doped carbon (M-N-C) materials, wherein dispersive metal atoms are coordinated to nitrogen atoms doped in carbon nanomaterials, have presented a high promise to replace the conventional metal or metal oxides-based catalysts. In this work, recent progress in M-N-C-based materials achieved in both theoretical and experimental investigations is summarized and general principles for novel catalysts design from electronic structure modulating are provided. Firstly, the applications and mechanisms on the advantages and challenges of M-N-C-based materials for a variety of sustainable fuel generation and bioinspired reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and nanozyme reactions are reviewed. Then, strategies toward enhancing the catalytic performance by engineering the nature of metal ion centers, coordinative environment of active centers, carbon support, and their synergistic cooperation, are proposed. Finally, prospects for the rational design of next generation high-performance M-N-C-based catalysts are outlined. It is expected that this work will provide insights into high-performance catalysts innovation for sustainable and environmental technologies.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Rational design of V doped CoP/Ni2P heterostructural catalysts for highly efficient ethanol electrolysis
    Jing, Yunlong
    Lu, Borong
    Jiang, Yiyuan
    Zhu, Kai
    Ye, Ke
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1021
  • [42] Metal–organic frameworks-inspired design of highly efficient nitrogen-doped carbon nanoflower electrocatalysts for Zn–air batteries
    Yunxiao Zhang
    Wenhua Xiao
    Tiantian Hu
    Shanxia Hu
    Hongqiang Wang
    Minjie Zhou
    Zhaohui Hou
    Yu Liu
    Binhong He
    Journal of Materials Science, 2023, 58 : 8157 - 8168
  • [43] Nitrogen-doped carbon nanotubes as efficient catalysts for isobutane dehydrogenation
    Mu, Jiali
    France, Liam John
    Liu, Baoan
    Shi, Junjun
    Long, Jinxing
    Lv, LuFeng
    Li, Xuehui
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (24) : 8562 - 8570
  • [44] Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions
    Yuan, Xiaoling
    An, Nihong
    Zhu, Zongxin
    Sun, He
    Zheng, Jixing
    Jia, Mingjun
    Lu, Chunmei
    Zhang, Wenxiang
    Liu, Na
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2018, 119 : 320 - 329
  • [45] Nitrogen-doped carbon coatings on carbon nanotubes as efficient oxygen reduction catalysts
    Li Li-xiang
    Zhao, Hong-wei
    Xing Tian-yu
    Geng Xin
    Song Ren-feng
    An Bai-gang
    NEW CARBON MATERIALS, 2017, 32 (05) : 419 - 426
  • [46] Design and synthesis of highly efficient nitrogen-doped carbon nano-onions for asymmetric supercapacitors
    Pallavolu, Mohan Reddy
    Kumar, Yedluri Anil
    Reddy, N. Ramesh
    Dhananjaya, M.
    Al-Asbahi, Bandar Ali
    Sreedhar, Adem
    Joo, Sang W.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 918
  • [47] Highly Active Nitrogen-Doped Mesoporous Carbon Materials for Supercapacitors
    Yan, Jingjing
    Guo, Congxiu
    Guo, Xiangyun
    Tong, Xili
    JOURNAL OF ELECTRONIC MATERIALS, 2022, 51 (03) : 1021 - 1028
  • [48] Highly Active Nitrogen-Doped Mesoporous Carbon Materials for Supercapacitors
    Jingjing Yan
    Congxiu Guo
    Xiangyun Guo
    Xili Tong
    Journal of Electronic Materials, 2022, 51 : 1021 - 1028
  • [49] Highly efficient electrochemiluminescence of nitrogen-doped carbon quantum dots
    Qin, Xiaoli
    Zhang, Congyang
    Whitworth, Zackry
    Zhan, Ziying
    Chu, Kenneth
    Hu, Ping
    Jahanghiri, Sara
    Zhou, Jigang
    Chen, Jinxing
    Zhang, Qiao
    Ding, Zhifeng
    ADVANCED SENSOR AND ENERGY MATERIALS, 2023, 2 (03):
  • [50] Active nitrogen sites on nitrogen doped carbon for highly efficient associative ammonia decomposition
    Ye, Dongpei
    Leung, Kwan Chee
    Niu, Wentian
    Duan, Mengqi
    Li, Jiasi
    Ho, Ping-Luen
    Szalay, Dorottya
    Wu, Tai-Sing
    Soo, Yun-Liang
    Wu, Simson
    Tsang, Shik Chi Edman
    ISCIENCE, 2024, 27 (08)