A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients

被引:81
作者
Andrews, L. M. [1 ]
Hesselink, D. A. [2 ,3 ]
van Schaik, R. H. N. [4 ]
van Gelder, T. [1 ,2 ,3 ]
de Fijter, J. W. [5 ]
Lloberas, N. [6 ]
Elens, L. [7 ]
Moes, D. J. A. R. [8 ]
de Winter, B. C. M. [1 ]
机构
[1] Univ Med Ctr Rotterdam, Erasmus MC, Dept Hosp Pharm, POB 2040, NL-3000 CA Rotterdam, Netherlands
[2] Univ Med Ctr Rotterdam, Erasmus MC, Div Nephrol & Transplantat, Dept Internal Med, Rotterdam, Netherlands
[3] Rotterdam Transplant Grp, Rotterdam, Netherlands
[4] Univ Med Ctr Rotterdam, Erasmus MC, Dept Clin Chem, Rotterdam, Netherlands
[5] Leiden Univ, Med Ctr, Dept Nephrol, Leiden, Netherlands
[6] Hosp Univ Bellvitge, IDIBELL, Dept Nephrol, Barcelona, Spain
[7] UCL, LDRI, PharmacoGen & PharmacoKinet PMGK, Dept Integrated PharmacoMetr, Brussels, Belgium
[8] Leiden Univ, Med Ctr, Dept Clin Pharm & Toxicol, Leiden, Netherlands
关键词
cytochrome P450 enzymes; genetics and pharmacogenetics; immunosuppression Immunology; pharmacokinetics; population analysis; renal transplantation; CYP3A5; GENOTYPE; CLINICAL PHARMACOKINETICS; IMMUNOSUPPRESSIVE DRUGS; CALCINEURIN INHIBITORS; KIDNEY-TRANSPLANTATION; UNITED-STATES; PHARMACOGENETICS; PHARMACODYNAMICS; POLYMORPHISMS; CANCER;
D O I
10.1111/bcp.13838
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aims The aims of this study were to describe the pharmacokinetics of tacrolimus immediately after kidney transplantation, and to develop a clinical tool for selecting the best starting dose for each patient. Methods Data on tacrolimus exposure were collected for the first 3 months following renal transplantation. A population pharmacokinetic analysis was conducted using nonlinear mixed-effects modelling. Demographic, clinical and genetic parameters were evaluated as covariates. Results A total of 4527 tacrolimus blood samples collected from 337 kidney transplant recipients were available. Data were best described using a two-compartment model. The mean absorption rate was 3.6 h(-1), clearance was 23.0 l h(-1) (39% interindividual variability, IIV), central volume of distribution was 692 l (49% IIV) and the peripheral volume of distribution 5340 l (53% IIV). Interoccasion variability was added to clearance (14%). Higher body surface area (BSA), lower serum creatinine, younger age, higher albumin and lower haematocrit levels were identified as covariates enhancing tacrolimus clearance. Cytochrome P450 (CYP) 3A5 expressers had a significantly higher tacrolimus clearance (160%), whereas CYP3A4*22 carriers had a significantly lower clearance (80%). From these significant covariates, age, BSA, CYP3A4 and CYP3A5 genotype were incorporated in a second model to individualize the tacrolimus starting dose: Dose (mg) = 222ng h ml(-1)*22.51h(-1) *[(1.0, if CYP3A5*3/*3) or(1.62; if CYP3A5*1/*3 or CYP3A5*1/*1] *[(1.0, if CYP3A4*1 or unknown) or (0.814, of CYP3A4*22)]* (Age/56)(-0.50)*(BSA/1.93)(0.72) /1000 Both models were successfully internally and externally validated. A clinical trial was simulated to demonstrate the added value of the starting dose model. Conclusions For a good prediction of tacrolimus pharmacokinetics, age, BSA, CYP3A4 and CYP3A5 genotype are important covariates. These covariates explained 30% of the variability in CL/F. The model proved effective in calculating the optimal tacrolimus dose based on these parameters and can be used to individualize the tacrolimus dose in the early period after transplantation.
引用
收藏
页码:601 / 615
页数:15
相关论文
共 63 条
[1]   A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach [J].
Andreu, Franc ;
Colom, Helena ;
Elens, Laure ;
van Gelder, Teun ;
van Schaik, Ronald H. N. ;
Hesselink, Dennis A. ;
Bestard, Oriol ;
Torras, Joan ;
Cruzado, Josep M. ;
Grinyo, Josep M. ;
Lloberas, Nuria .
CLINICAL PHARMACOKINETICS, 2017, 56 (08) :963-975
[2]   A Population Pharmacokinetic Model to Predict the Individual Starting Dose of Tacrolimus Following Pediatric Renal Transplantation [J].
Andrews, Louise M. ;
Hesselink, Dennis A. ;
van Gelder, Teun ;
Koch, Birgit C. P. ;
Cornelissen, Elisabeth A. M. ;
Bruggemann, Roger J. M. ;
van Schaik, Ron H. N. ;
de Wildt, Saskia N. ;
Cransberg, Karlien ;
de Winter, Brenda C. M. .
CLINICAL PHARMACOKINETICS, 2018, 57 (04) :475-489
[3]  
Andrews LM, 2017, TRANSPLANT DIRECT, V3, DOI 10.1097/TXD.0000000000000644
[4]   Consideration of the ethnic prevalence of genotypes in the clinical use of tacrolimus [J].
Andrews, Louise M. ;
De Winter, Brenda C. M. ;
Van Gelder, Teun ;
Hesselink, Dennis A. .
PHARMACOGENOMICS, 2016, 17 (16) :1737-1740
[5]   Dosing algorithms for initiation of immunosuppressive drugs in solid organ transplant recipients [J].
Andrews, Louise M. ;
Riva, Natalia ;
de Winter, Brenda C. ;
Hesselink, Dennis A. ;
de Wildt, Saskia N. ;
Cransberg, Karlien ;
van Gelder, Teun .
EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2015, 11 (06) :921-936
[6]   Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients [J].
Antignac, Marie ;
Barrou, Benoit ;
Farinotti, Robert ;
Lechat, Philippe ;
Urien, Saik .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2007, 64 (06) :750-757
[7]   Inclusion of CYP3A5 genotyping in a nonparametric population model improves dosing of tacrolimus early after transplantation [J].
Asberg, Anders ;
Midtvedt, Karsten ;
van Guilder, Mike ;
Storset, Elisabet ;
Bremer, Sara ;
Bergan, Stein ;
Jelliffe, Roger ;
Hartmann, Anders ;
Neely, Michael N. .
TRANSPLANT INTERNATIONAL, 2013, 26 (12) :1198-1207
[8]  
Bergmann TK, 2014, THER DRUG MONIT, V36, P62, DOI 10.1097/FTD.0b013e31829f1ab8
[9]   Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing [J].
Birdwell, K. A. ;
Decker, B. ;
Barbarino, J. M. ;
Peterson, J. F. ;
Stein, C. M. ;
Sadee, W. ;
Wang, D. ;
Vinks, A. A. ;
He, Y. ;
Swen, J. J. ;
Leeder, J. S. ;
van Schaik, R. H. N. ;
Thummel, K. E. ;
Klein, T. E. ;
Caudle, K. E. ;
MacPhee, I. A. M. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2015, 98 (01) :19-24
[10]   A published pharmacogenetic algorithm was poorly predictive of tacrolimus clearance in an independent cohort of renal transplant recipients [J].
Boughton, Oliver ;
Borgulya, Gabor ;
Cecconi, Maurizio ;
Fredericks, Salim ;
Moreton-Clack, Michelle ;
MacPhee, Iain A. M. .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2013, 76 (03) :425-431