共 50 条
MULTIPLE SOLUTIONS OF FRACTIONAL KIRCHHOFF EQUATIONS INVOLVING A CRITICAL NONLINEARITY
被引:3
作者:
Jin, Hua
[1
]
Liu, Wenbin
[1
]
Zhang, Jianjun
[2
]
机构:
[1] China Univ Min & Technol, Coll Sci, Xuzhou 221116, Peoples R China
[2] Chongqing Jiaotong Univ, Coll Mathemat & Stat, Chongqing 400074, Peoples R China
来源:
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S
|
2018年
/
11卷
/
03期
关键词:
Fractional Kirchhoff equation;
multiple solutions;
critical nonlinearity;
BREZIS-NIRENBERG RESULT;
POSITIVE SOLUTIONS;
EXISTENCE;
BIFURCATION;
BEHAVIOR;
D O I:
10.3934/dcdss.2018029
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we are concerned with the following fractional Kirchhoff equation { (a + b integral N-R vertical bar (-Delta)s/2 u vertical bar(2)) (-Delta)(s)(u) = lambda u + mu vertical bar u vertical bar(q-2) u + vertical bar u vertical bar(s)(2)*(-2)u in Omega, R-N\Omega in u=0 where N > 2s, a,b,lambda,mu > 0, s is an element of (0,1) and Omega is a boundeden domain with continuous boundary. Here (-Delta)(s) is the fractional Laplacian operator. For 2 < q <= min {4,2(S)(*)} we prove that if b is small or is large, the problem above admits multiple solutions by virtue of a linking theorem due to G. Cerami, D. Fortunato and M. Struwe [7, Theorem 2.5].
引用
收藏
页码:533 / 545
页数:13
相关论文