Quadratic serendipity element shape functions on general planar polygons

被引:2
作者
Cao, Juan [1 ,2 ]
Xiao, Yi [1 ,2 ]
Xiao, Yanyang [3 ]
Chen, Zhonggui [4 ]
Xue, Fei [1 ,2 ]
Wei, Xiaodong [5 ]
Zhang, Yongjie Jessica [6 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
[3] Nanchang Univ, Sch Informat Engn, Nanchang 330031, Jiangxi, Peoples R China
[4] Xiamen Univ, Sch Informat, Xiamen 361000, Peoples R China
[5] Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
[6] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
基金
瑞士国家科学基金会; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Polygonal finite element methods; Generalized barycentric coordinates; Polygonal mesh generation; FINITE-ELEMENTS; TOPOLOGY OPTIMIZATION;
D O I
10.1016/j.cma.2022.114703
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper proposes a method for the construction of quadratic serendipity element (QSE) shape functions on planar convex and concave polygons. Existing approaches for constructing QSE shape functions are linear combinations of the pair-wise products of generalized barycentric coordinates with linear precision, restricted to the convex polygonal domain or resort to numerical optimization. We extend the construction to general polygons with no more than three collinear consecutive vertices. This is done by defining coefficients of the linear combination as the oriented area of triangles with vertices from the polygonal domain, which can be either convex or concave. The proposed shape functions possess linear to quadratic precision. We prove the interpolation error estimates for mean value coordinate-based QSE shape functions on convex and concave polygonal domains satisfying a set of geometric constraints for standard finite element analysis. We also tailor a polygonal mesh generation scheme that improves the uniformity and avoids short edges of Voronoi diagrams for their use in the QSE-based polygonal finite element computation. Numerical tests for the 2D Poisson equations on various domains are presented, demonstrating the optimal convergence rates in both the L-2-norm and the H-1-seminorm. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:28
相关论文
共 49 条
[1]  
Adams R. A., 2003, Sobolev Spaces
[2]   Blended barycentric coordinates [J].
Anisimov, Dmitry ;
Panozzo, Daniele ;
Hormann, Kai .
COMPUTER AIDED GEOMETRIC DESIGN, 2017, 52-53 :205-216
[3]  
Balafas G., 2014, POLYHEDRAL MESH GENE
[4]   Power Coordinates: A Geometric Construction of Barycentric Coordinates on Convex Polytopes [J].
Budninskiy, Max ;
Liu, Beibei ;
Tong, Yiying ;
Desbrun, Mathieu .
ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (06)
[5]   Functional data approximation on bounded domains using polygonal finite elements [J].
Cao, Juan ;
Xiao, Yanyang ;
Chen, Zhonggui ;
Wang, Wenping ;
Bajaj, Chandrajit .
COMPUTER AIDED GEOMETRIC DESIGN, 2018, 63 :149-163
[6]  
Chen JS, 2001, INT J NUMER METH ENG, V50, P435, DOI 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO
[7]  
2-A
[8]   Polygonal finite elements for finite elasticity [J].
Chi, Heng ;
Talischi, Cameron ;
Lopez-Pamies, Oscar ;
Paulino, Glaucio H. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 101 (04) :305-328
[9]   Scaled boundary polygons with application to fracture analysis of functionally graded materials [J].
Chiong, Irene ;
Ooi, Ean Tat ;
Song, Chongmin ;
Tin-Loi, Francis .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 98 (08) :562-589
[10]  
Coxeter H. S. M., 1961, INTRO GEOMETRY