On the existence of stationary patches

被引:24
作者
Gomez-Serrano, Javier [1 ]
机构
[1] Princeton Univ, Dept Math, 610 Fine Hall,Washington Rd, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Incompressible; Surface quasi-geostrophic; Bifurcation theory; Stationary; Patch; QUASI-GEOSTROPHIC EQUATIONS; GLOBAL WEAK SOLUTIONS; CONNECTED V-STATES; SHARP FRONTS; SQG; REGULARITY; SINGULARITIES; EQUILIBRIUM;
D O I
10.1016/j.aim.2018.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show the existence of the first nontrivial family of analytic stationary patch solutions of the SQG and gSQG equations. This answers an open problem in F. de la Hoz et al. (2016) [13]. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:110 / 140
页数:31
相关论文
共 39 条
[1]  
[Anonymous], 1995, DYNAMICAL PROBLEMS N
[2]  
[Anonymous], 1972, HDB MATH FUNCTIONS A
[3]  
Buckmaster T., 2018, COMM PURE APPL MATH
[4]   MOTIONS OF VORTEX PATCHES [J].
BURBEA, J .
LETTERS IN MATHEMATICAL PHYSICS, 1982, 6 (01) :1-16
[5]  
Castro A., 2016, ANN PDE, V2, P1
[6]   EXISTENCE AND REGULARITY OF ROTATING GLOBAL SOLUTIONS FOR THE GENERALIZED SURFACE QUASI-GEOSTROPHIC EQUATIONS [J].
Castro, Angel ;
Cordoba, Diego ;
Gomez-Serrano, Javier .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (05) :935-984
[7]   Generalized surface quasi-geostrophic equations with singular velocities [J].
Chae, Dongho ;
Constantin, Peter ;
Cordoba, Diego ;
Gancedo, Francisco ;
Wu, Jiahong .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (08) :1037-1066
[8]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[9]   Global Weak Solutions for SQG in Bounded Domains [J].
Constantin, Peter ;
Huy Quang Nguyen .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (11) :2323-2333
[10]  
Cordoba A., 2018, Trans. Amer. Math. Soc. Ser. B, V5, P1