Interpolation theory of anisotropic finite elements and applications

被引:5
作者
Chen ShaoChun [1 ]
Xiao LiuChao [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 08期
基金
中国国家自然科学基金;
关键词
interpolation theory; anisotropic finite elements; Newton's formula; divided difference;
D O I
10.1007/s11425-008-0107-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
引用
收藏
页码:1361 / 1375
页数:15
相关论文
共 16 条
[1]   The maximum angle condition for mixed and nonconforming elements:: Application to the Stokes equations [J].
Acosta, G ;
Duránn, RG .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 37 (01) :18-36
[2]   ANISOTROPIC INTERPOLATION WITH APPLICATIONS TO THE FINITE-ELEMENT METHOD [J].
APEL, T ;
DOBROWOLSKI, M .
COMPUTING, 1992, 47 (3-4) :277-293
[3]  
Apel T, 1999, ANISOTROPIC FINITE E
[4]  
Atkinson KE, 1978, An introduction to numerical analysis
[5]   ANGLE CONDITION IN FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
AZIZ, AK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (02) :214-226
[6]  
Brenner S. C., 2007, Texts Appl. Math., V15
[7]   Anisotropic interpolations with application to nonconforming elements [J].
Chen, SC ;
Zhao, YC ;
Shi, DY .
APPLIED NUMERICAL MATHEMATICS, 2004, 49 (02) :135-152
[8]   Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes [J].
Chen, SC ;
Shi, DY ;
Zhao, YC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) :77-95
[9]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[10]  
DURAN RG, 2006, P INT C MATH, V3, P1181