A cluster-assumption based batch mode active learning technique

被引:52
作者
Patra, Swarnajyoti [1 ]
Bruzzone, Lorenzo [1 ]
机构
[1] Univ Trento, Dept Informat Engn & Comp Sci, I-38123 Trento, Italy
关键词
Active learning; Cluster assumption; Entropy; Query function; Support vector machine; CLASSIFICATION;
D O I
10.1016/j.patrec.2012.01.015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an active learning technique for solving multiclass problems with support vector machine (SVM) classifiers. The technique is based on both uncertainty and diversity criteria. The uncertainty criterion is implemented by analyzing the one-dimensional output space of the SVM classifier. A simple histogram thresholding algorithm is used to find out the low density region in the SVM output space to identify the most uncertain samples. Then the diversity criterion exploits the kernel k-means clustering algorithm to select uncorrelated informative samples among the selected uncertain samples. To assess the effectiveness of the proposed method we compared it with other batch mode active learning techniques presented in the literature using one toy data set and three real data sets. Experimental results confirmed that the proposed technique provided a very good tradeoff among robustness to biased initial training samples, classification accuracy, computational complexity, and number of new labeled samples necessary to reach the convergence. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1042 / 1048
页数:7
相关论文
共 22 条
[1]  
Brinker K., 2003, P 20 INT C MACH LEAR, P59
[2]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[3]  
Campbell C., 2000, ICML, P111
[4]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[5]  
Dagan I., 1995, Machine Learning. Proceedings of the Twelfth International Conference on Machine Learning, P150
[6]   Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images [J].
Demir, Begum ;
Persello, Claudio ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (03) :1014-1031
[7]  
Frank A., 2010, UCI machine learning repository, V213
[8]   Selective sampling using the query by committee algorithm [J].
Freund, Y ;
Seung, HS ;
Shamir, E ;
Tishby, N .
MACHINE LEARNING, 1997, 28 (2-3) :133-168
[9]   Statistical active learning in multilayer perceptrons [J].
Fukumizu, K .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01) :17-26
[10]   A NEW METHOD FOR GRAY-LEVEL PICTURE THRESHOLDING USING THE ENTROPY OF THE HISTOGRAM [J].
KAPUR, JN ;
SAHOO, PK ;
WONG, AKC .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1985, 29 (03) :273-285