Particle-tracking simulation of fractional diffusion-reaction processes

被引:21
作者
Zhang, Yong [1 ]
Papelis, Charalambos [2 ]
机构
[1] Desert Res Inst, Las Vegas, NV 89119 USA
[2] New Mexico State Univ, Dept Civil Engn, Las Cruces, NM 88003 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 06期
基金
美国国家科学基金会;
关键词
RANDOM-WALKS; POROUS-MEDIA; TRANSPORT; EQUATIONS; TIME;
D O I
10.1103/PhysRevE.84.066704
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Computer simulation of reactive transport in heterogeneous systems remains a challenge due to the multiscale nature of reactive dynamics and the non-Fickian behavior of transport. This study develops a fully Lagrangian approach via particle tracking to describe the reactive transport controlled by the tempered super-or subdiffusion. In the particle-tracking algorithm, the local-scale reaction is affected by the interaction radius between adjacent reactants, whose motion can be simulated by the Langevin equations corresponding to the tempered stable models. Lagrangian simulation results show that the transient superdiffusion enhances the reaction by enhancing the degree of mixing of the reactants. The proposed particle-tracking scheme can also be extended conveniently to multiscale superdiffusion. For the case of transient subdiffusion, the trapping of solutes in the immobile phase can either decrease or accelerate the reaction rate, depending on the initial condition of the reactant particles. Further practical applications show that the new solver efficiently captures bimolecular reactions observed in laboratories.
引用
收藏
页数:22
相关论文
共 50 条
[31]   Coarse-graining of diffusion-reaction models with catalyst archipelagos [J].
Ratnakar, Ram R. ;
Balakotaiah, Vemuri .
CHEMICAL ENGINEERING SCIENCE, 2014, 110 :44-54
[32]   Diffusion-reaction modelling of modulated hydrogen loading with internal traps [J].
Brunner, Philipp ;
Wuerschum, Roland .
PHILOSOPHICAL MAGAZINE, 2025,
[33]   Travelling wave solutions in a negative nonlinear diffusion-reaction model [J].
Li, Yifei ;
van Heijster, Peter ;
Marangell, Robert ;
Simpson, Matthew J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 81 (6-7) :1495-1522
[34]   A class of exact solutions for biomacromolecule diffusion-reaction in live cells [J].
Zadeh, Kouroush Sadegh ;
Montas, Hubert J. .
JOURNAL OF THEORETICAL BIOLOGY, 2010, 264 (03) :914-933
[35]   A network element method for heterogeneous and anisotropic diffusion-reaction problems [J].
Coatleven, Julien .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 470
[36]   Pore-scale study of diffusion-reaction processes involving dissolution and precipitation using the lattice Boltzmann method [J].
Chen, Li ;
Kang, Qinjun ;
Carey, Bill ;
Tao, Wen-Quan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 75 :483-496
[37]   SPECIFIC FEATURES OF THE SIMULATION OF THE PARTICLE DIFFUSION PROCESSES IN SPATIALLY PERIODIC FIELDS [J].
Aksenova, Viktoriia Yu ;
Marchenko, Ivan G. ;
Marchenko, Igor I. .
EAST EUROPEAN JOURNAL OF PHYSICS, 2022, (02) :33-42
[38]   Field-Scale Modeling of Tracer Injection in Naturally Fractured Reservoirs Using the Random-Walk Particle-Tracking Simulation [J].
Stalgorova, E. ;
Babadagli, T. .
SPE JOURNAL, 2012, 17 (02) :580-592
[39]   A particle-tracking scheme for simulating pathlines in coupled surface-subsurface flows [J].
de Rooij, Rob ;
Graham, Wendy ;
Maxwell, Reed M. .
ADVANCES IN WATER RESOURCES, 2013, 52 :7-18
[40]   Numerical Solutions of Space-Fractional Advection-Diffusion-Reaction Equations [J].
Salomoni, Valentina Anna Lia ;
De Marchi, Nico .
FRACTAL AND FRACTIONAL, 2022, 6 (01)