CM cycles on Shimura curves, and p-adic L-function

被引:6
作者
Masdeu, Marc [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
关键词
CM cycles; Shimura curve; p-adic integration; anti-cyclotomic p-adic L-function; MODULAR-FORMS; HEEGNER CYCLES; PERIODS; POINTS; UNIFORMIZATION;
D O I
10.1112/S0010437X12000206
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a modular form of weight k >= 2 and level N, let K be a quadratic imaginary field and assume that there is a prime p exactly dividing N. Under certain arithmetic conditions on the level N and the field K, one can attach to this data a p-adic L-function L-p (f, K, s), as done by Bertolini-Darmon-Iovita-Spiess in [Teitelbaum's exceptional zero conjecture in the anticyclotomic setting, Amer. J. Math. 124 (2002), 411-449]. In the case of p being inert in K, this analytic function of a p-adic variable s vanishes in the critical range s = 1, ... , k - 1, and one may be interested in the values of its derivative in this range. We construct, for k >= 4, a Chow motive endowed with a distinguished collection of algebraic cycles which encode these values, via the p-adic Abel-Jacobi map. Our main result generalizes the result obtained by Iovita and Spiess in [Derivatives of p-adic L-functions, Heegner cycles and monodromy modules attached to modular forms, Invent. Math. 1 5 4 (2003), 333-384], which gives a similar formula for the central value s = k/2. Even in this case our construction is different from the one found by Iovita and Spiess.
引用
收藏
页码:1003 / 1032
页数:30
相关论文
共 38 条
[1]   Heegner points, p-adic L-functions, and the Cerednik-Drinfeld uniformization [J].
Bertolini, M ;
Darmon, H .
INVENTIONES MATHEMATICAE, 1998, 131 (03) :453-491
[2]   Teitelbaum's exceptional zero conjecture in the anticyclotomic setting [J].
Bertolini, M ;
Darmon, H ;
Iovita, A ;
Spiess, M .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (02) :411-449
[3]   p-adic periods, p-adic L-functions, and the p-adic uniformization of Shimura curves [J].
Bertolini, M ;
Darmon, H .
DUKE MATHEMATICAL JOURNAL, 1999, 98 (02) :305-334
[4]   Heegner points on Mumford-Tate curves [J].
Bertolini, M ;
Darmon, H .
INVENTIONES MATHEMATICAE, 1996, 126 (03) :413-456
[5]  
Bloch S., 1990, Progr. Math., VI, P333
[6]  
Bosch Siegfried, 1984, Non-Archimedean analysis, volume 261 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
[7]  
Boutot J. -F., 1992, ASTERISQUE, V7, P45
[8]  
Brinon O., 2009, LECT NOTES
[9]   TORSION POINTS ON CURVES AND P-ADIC ABELIAN-INTEGRALS [J].
COLEMAN, RF .
ANNALS OF MATHEMATICS, 1985, 121 (01) :111-168
[10]   DILOGARITHMS, REGULATORS AND P-ADIC L-FUNCTIONS [J].
COLEMAN, RF .
INVENTIONES MATHEMATICAE, 1982, 69 (02) :171-208