Additive representation in thin sequences, I:: Waring's problem for cubes

被引:18
作者
Brüdern, J
Kawada, K
Wooley, TD
机构
[1] Univ Stuttgart, Inst Math A, D-70511 Stuttgart, Germany
[2] Iwate Univ, Dept Math, Fac Educ, Morioka, Iwate 0208550, Japan
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2001年 / 34卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0012-9593(01)01067-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate representation of numbers from certain thin sequences like the squares or cubes by sums of cubes. It is shown, in particular, that almost all values of an integral cubic polynomial are sums of six cubes. The methods are very flexible and may be applied to many related problems. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:471 / 501
页数:31
相关论文
共 21 条
[1]   ON WARINGS PROBLEM FOR 4 CUBES [J].
BRUDERN, J ;
WATT, N .
DUKE MATHEMATICAL JOURNAL, 1995, 77 (03) :583-606
[2]   ON WARINGS PROBLEM FOR CUBES [J].
BRUDERN, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 109 :229-256
[3]   A PROBLEM IN ADDITIVE NUMBER-THEORY [J].
BRUDERN, J .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :27-33
[4]  
BRUDERN J, IN PRESS MATHEMATIKA
[5]  
BRUDERN J, IN PRESS MATH SCAND
[6]  
BRUDERN J, IN PRESS ACTA ARITH
[7]  
BRUDERN J, IN PRESS Q J MATH OX
[8]  
DAVENPORT H, 1962, ANAL METHODS DIOPHAN
[9]  
Estermann T., 1931, MATH ANN, V105, P653
[10]  
HARDY GH, 1920, GOTTINGER NACHRICHTE, P33