The sphere problem and the L-functions

被引:7
作者
Chamizo, F. [1 ]
Cristobal, E. [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Fac Ciencias, E-28049 Madrid, Spain
关键词
lattice point; exponential sum; L-function; character sum; LATTICE POINTS; DISCREPANCY;
D O I
10.1007/s10474-011-0144-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve the upper bound for the lattice point discrepancy of large spheres under conjectural properties of the real L-functions. In connection with this we give some new unconditional estimates for exponential and character sums of independent interest.
引用
收藏
页码:97 / 115
页数:19
相关论文
共 26 条
  • [1] [Anonymous], 1986, Disquisitiones arithmeticae
  • [2] Bykovskii V.A., 1997, J MATH SCI NEW YORK, V83, P720
  • [3] Lattice points in rational ellipsoids
    Chamizo, F.
    Cristobal, E.
    Ubis, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) : 283 - 289
  • [4] Visible lattice points in the sphere
    Chamizo, Fernando
    Cristobal, Elena
    Ubis, Adrian
    [J]. JOURNAL OF NUMBER THEORY, 2007, 126 (02) : 200 - 211
  • [5] Chamizo F, 1995, REV MAT IBEROAM, V11, P417
  • [6] CHEN JR, 1963, SCI SINICA, V12, P751
  • [7] Ellison WilliamJohn., 1975, Les nombres premiers
  • [8] Graham S. W., 1991, London Math. Soc. Lecture Note Ser., V126
  • [9] GROSSWALD E, 1985, REPRESENTATION INTEG
  • [10] Heath-Brown DR, 1999, NUMBER THEORY IN PROGRESS, VOLS 1 AND 2, P883