A new medium for boriding of Ti6Al4V alloy for biomedical applications

被引:10
|
作者
Kaplan, Yavuz [1 ]
Can, Ahmet Cetin [2 ]
Ulukoy, Arzum [1 ]
机构
[1] Pamukkale Univ, Fac Technol, Dept Mfg Engn, TR-20020 Denizli, Turkey
[2] Pamukkale Univ, Dept Mech Engn, Fac Engn, Denizli, Turkey
关键词
Boriding; Ti6Al4V; new boriding medium; oxidation; KFeO2; COMMERCIALLY PURE TITANIUM; GROWTH-KINETICS; SURFACE; COATINGS; TI; TI-6AL-4V; BEHAVIOR; LAYERS; AL;
D O I
10.1177/1464420716662801
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents a low-cost and environmentally friendly medium for the pack boriding (boronizing) of a Ti6Al4V alloy. Titanium and its alloys are known to be highly reactive and to have extreme oxygen affinity. Therefore, boriding is performed under vacuum or in protective atmospheric conditions. This work evaluated the pack boriding heat treatments of a Ti6Al4V alloy under atmospheric conditions via the various boriding media used by previous researchers. In addition, a new pack boriding medium was developed by adding aluminum. Consequently, this study demonstrated that it is possible to obtain an undamaged titanium surface by applying solid-state boriding under atmospheric conditions.
引用
收藏
页码:109 / 119
页数:11
相关论文
共 50 条
  • [21] Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications
    I. Yadroitsev
    P. Krakhmalev
    I. Yadroitsava
    A. Du Plessis
    JOM, 2018, 70 : 372 - 377
  • [22] Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications
    Daniel J. Fernandes
    Ruy G. Marques
    Carlos N. Elias
    Journal of Materials Science: Materials in Medicine, 2017, 28
  • [23] Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution
    Yadroitsev, I.
    Krakhmalev, P.
    Yadroitsava, I.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 583 : 404 - 409
  • [24] Qualification of Ti6Al4V ELI Alloy Produced by Laser Powder Bed Fusion for Biomedical Applications
    Yadroitsev, I.
    Krakhmalev, P.
    Yadroitsava, I.
    Du Plessis, A.
    JOM, 2018, 70 (03) : 372 - 377
  • [25] Electrochemical boriding of titanium alloy Ti-6Al-4V
    Alaeddine, Kaouka
    Khedidja, Benarous
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019, 8 (06): : 6407 - 6412
  • [26] Influence of acid treatment on surface properties and in vivo performance of Ti6Al4V alloy for biomedical applications
    Fernandes, Daniel J.
    Marques, Ruy G.
    Elias, Carlos N.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2017, 28 (10)
  • [27] The Improvement of Corrosion Resistance of Ti6Al4V Alloy Used Biomedical Materials
    Danisman, Sengul
    Teber, Muharrem
    Arik, Gokhan
    Onre, Sinan
    2014 18TH NATIONAL BIOMEDICAL ENGINEERING MEETING (BIYOMUT), 2014,
  • [28] Enhanced fatigue performance of porous coated Ti6Al4V biomedical alloy
    Apachitei, I.
    Leoni, A.
    Riemslag, A. C.
    Fratila-Apachitei, L. E.
    Duszczyk, J.
    APPLIED SURFACE SCIENCE, 2011, 257 (15) : 6941 - 6944
  • [29] Abrasive machining of Ti6Al4V alloy
    Lattner, Radek
    Holešovskỳ, František
    Karel, Tomáš
    Lattner, Michal
    Manufacturing Technology, 2015, 15 (04): : 571 - 575
  • [30] Thermal cycling In (α+β) Ti6Al4V alloy
    M. N. Mungole
    Rahul Kanojiya
    Rakesh Sharma
    Bijayani Panda
    Transactions of the Indian Institute of Metals, 2008, 61 : 93 - 97