SCALING LIMITS OF DISCRETE OPTIMAL TRANSPORT

被引:17
作者
Gladbach, Peter [1 ]
Kopfer, Eva [2 ]
Maas, Jan [3 ]
机构
[1] Univ Leipzig, Math Inst, Augustuspl 10, D-04109 Leipzig, Germany
[2] Univ Bonn, Inst Angew Math, Endenicher Allee 60, D-53115 Bonn, Germany
[3] Inst Sci & Technol Austria IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
optimal transport; discretization; Gromov-Hausdorff convergence; GRADIENT FLOW; EQUATIONS; ENTROPY;
D O I
10.1137/19M1243440
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider dynamical transport metrics for probability measures on discretizations of a bounded convex domain in R-d. These metrics are natural discrete counterparts to the Kantorovich metric W-2, defined using a Benamou-Brenier-type formula. Under mild assumptions we prove an asymptotic upper bound for the discrete transport metric W-T in terms of W-2, as the size of the mesh T tends to 0. However, we show that the corresponding lower bound may fail in general, even on certain one-dimensional and symmetric two-dimensional meshes. In addition, we show that the asymptotic lower bound holds under an isotropy assumption on the mesh, which turns out to be essentially necessary. This assumption is satisfied, e.g., for tilings by convex regular polygons, and it implies Gromov-Hausdorff convergence of the transport metric.
引用
收藏
页码:2759 / 2802
页数:44
相关论文
共 32 条
[1]  
AMBROSIO L., 2005, Lec. Math. ETH Zu"\rich, Birkha
[2]   BAKRY-EMERY CURVATURE-DIMENSION CONDITION AND RIEMANNIAN RICCI CURVATURE BOUNDS [J].
Ambrsio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
ANNALS OF PROBABILITY, 2015, 43 (01) :339-404
[3]  
[Anonymous], 2015, PROGR NONLINEAR DIFF
[4]  
[Anonymous], 2014, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
[5]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[6]   Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure [J].
Cances, Clement ;
Guichard, Cindy .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2017, 17 (06) :1525-1584
[7]   Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance [J].
Carlen, Eric A. ;
Maas, Jan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (05) :1810-1869
[8]   A discrete Schrodinger equation via optimal transport on graphs [J].
Chow, Shui-Nee ;
Li, Wuchen ;
Zhou, Haomin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (08) :2440-2469
[9]   Fokker-Planck Equations for a Free Energy Functional or Markov Process on a Graph [J].
Chow, Shui-Nee ;
Huang, Wen ;
Li, Yao ;
Zhou, Haomin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (03) :969-1008
[10]  
Davies EB., 1989, CAMBRIDGE TRACTS MAT