Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading

被引:58
作者
Huang, E-Wen [2 ]
Barabash, Rozaliya I. [1 ,3 ]
Wang, Yandong [2 ,4 ]
Clausen, Bjorn [5 ]
Li, Li [2 ]
Liaw, Peter K. [2 ]
Ice, Gene E. [1 ]
Ren, Yang [6 ]
Choo, Hahn [2 ]
Pike, Lee M. [7 ]
Klarstrom, Dwaine L. [7 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[3] Univ Tennessee, Ctr Mat Proc, Knoxville, TN 37996 USA
[4] Northeastern Univ, Minist Educ, Key Lab Anisotropy & Texture Mat, Shenyang 110004, Peoples R China
[5] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA
[6] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
[7] Haynes Int Inc, Dept Technol Engn, Kokomo, IN 46904 USA
基金
美国国家科学基金会;
关键词
plasticity; dislocations; in-situ neutron-diffraction; fatigue;
D O I
10.1016/j.ijplas.2007.10.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The plastic behavior of an annealed HASTELLOY (R) C-22HS (TM) alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy. Published by Elsevier Ltd.
引用
收藏
页码:1440 / 1456
页数:17
相关论文
共 36 条
[1]   Size-strain line-broadening analysis of the ceria round-robin sample [J].
Balzar, D ;
Audebrand, N ;
Daymond, MR ;
Fitch, A ;
Hewat, A ;
Langford, JI ;
Le Bail, A ;
Louër, D ;
Masson, O ;
McCowan, CN ;
Popa, NC ;
Stephens, PW ;
Toby, BH .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2004, 37 :911-924
[2]   Quantitative microdiffraction from deformed crystals with unpaired dislocations and dislocation walls [J].
Barabash, RI ;
Ice, GE ;
Walker, FJ .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (03) :1457-1464
[3]  
BARABASH RI, 2000, MAT SCI ENG A-STRUCT, P49
[4]   Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation [J].
Benson, M. L. ;
Liaw, P. K. ;
Saleh, T. A. ;
Choo, H. ;
Brown, D. W. ;
Daymond, M. R. ;
Huang, E. -W. ;
Wang, X. -L. ;
Stoica, A. D. ;
Buchanan, R. A. ;
Klarstrom, D. L. .
PHYSICA B-CONDENSED MATTER, 2006, 385 :523-525
[5]   A direct method for the determination of the mean orientation-dependent elastic strains and stresses in polycrystalline materials from strain pole figures [J].
Bernier, Joel V. ;
Miller, Matthew P. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2006, 39 :358-368
[6]   SMARTS - a spectrometer for strain measurement in engineering materials [J].
Bourke, MAM ;
Dunand, DC ;
Ustundag, E .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (Suppl 1) :S1707-S1709
[7]   A neutron diffraction and modeling study of uniaxial deformation in polycrystalline beryllium [J].
Brown, DW ;
Bourke, MAM ;
Clausen, B ;
Holden, TM ;
Tomé, CN ;
Varma, R .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2003, 34A (07) :1439-1449
[8]   Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra [J].
Daymond, MR ;
Bourke, MAM ;
VonDreele, RB ;
Clausen, B ;
Lorentzen, T .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (04) :1554-1562
[9]  
Dieter GE., 1986, Mechanical Metallurgy, P103
[10]  
GUINIER A, 1989, SOLID STATE SUPERCON, P190