Exact controllability for the three-dimensional Navier-Stokes equations with the Navier slip boundary conditions

被引:8
|
作者
Havârneanu, T
Popa, C
Sritharan, SS
机构
[1] Alexandru Ioan Cuza Univ, Fac Matemat, Iasi 700506, Romania
[2] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
关键词
Navier-Stokes equations; controllability; Stokes equations; observability inequality; Carleman estimate;
D O I
10.1512/iumj.2005.54.2557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish the local exact internal controllability of steady state solutions for the Navier-Stokes equations in three-dimensional bounded domains, with the Navier slip boundary conditions. The proof is based on a Carleman-type estimate for the backward Stokes equations with the same boundary conditions, which is also established here.
引用
收藏
页码:1303 / 1350
页数:48
相关论文
共 50 条
  • [31] On Navier-Stokes equations with slip boundary conditions in an infinite pipe
    Mucha, PB
    ACTA APPLICANDAE MATHEMATICAE, 2003, 76 (01) : 1 - 15
  • [32] Spectral Method for Navier-Stokes Equations with Slip Boundary Conditions
    Guo, Ben-yu
    Jiao, Yu-jian
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (01) : 249 - 274
  • [33] Local exact controllability of the two-dimensional Navier-Stokes equations
    Fursikov, AV
    Emanuilov, OY
    SBORNIK MATHEMATICS, 1996, 187 (9-10) : 1355 - 1390
  • [34] A FINITE ELEMENT DISCRETIZATION OF THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS WITH MIXED BOUNDARY CONDITIONS
    Bernardi, Christine
    Hecht, Frederic
    Verfuerth, Ruediger
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (06): : 1185 - 1201
  • [35] Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations
    Parsani, Matteo
    Carpenter, Mark H.
    Nielsen, Eric J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 292 : 88 - 113
  • [36] On Regularity of a Weak Solution to the Navier-Stokes Equations with the Generalized Navier Slip Boundary Conditions
    Neustupa, Jiri
    Penel, Patrick
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [37] On Generalized Energy Inequality of the Damped Navier-Stokes Equations with Navier Slip Boundary Conditions
    Pal, Subha
    Chutia, Duranta
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 465 - 478
  • [38] Exact controllability of the Galerkin approximations of Navier-Stokes equations
    Lions, JL
    Zuazua, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (09): : 1015 - 1021
  • [39] Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations
    Raymond, J.-P.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (06): : 627 - 669
  • [40] On controllability of the Navier-Stokes equations
    Fursikov, AV
    FUNDAMENTAL PROBLEMATIC ISSUES IN TURBULENCE, 1999, : 51 - 56