Exact controllability for the three-dimensional Navier-Stokes equations with the Navier slip boundary conditions

被引:8
|
作者
Havârneanu, T
Popa, C
Sritharan, SS
机构
[1] Alexandru Ioan Cuza Univ, Fac Matemat, Iasi 700506, Romania
[2] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
关键词
Navier-Stokes equations; controllability; Stokes equations; observability inequality; Carleman estimate;
D O I
10.1512/iumj.2005.54.2557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we establish the local exact internal controllability of steady state solutions for the Navier-Stokes equations in three-dimensional bounded domains, with the Navier slip boundary conditions. The proof is based on a Carleman-type estimate for the backward Stokes equations with the same boundary conditions, which is also established here.
引用
收藏
页码:1303 / 1350
页数:48
相关论文
共 50 条
  • [21] Local exact controllability of the Navier-Stokes equations
    Fursikov, AV
    Imanuvilov, OY
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (03): : 275 - 280
  • [22] Remarks on exact controllability for the Navier-Stokes equations
    Imanuvilov, OY
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (03): : 39 - 72
  • [23] Global Controllability of the Navier-Stokes Equations in the Presence of Curved Boundary with No-Slip Conditions
    Liao, Jiajiang
    Sueur, Franck
    Zhang, Ping
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (03)
  • [24] BOUNDARY ε-REGULARITY CRITERIA FOR THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS
    Dong, Hongjie
    Wang, Kunrui
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1290 - 1309
  • [25] ON EXACT BOUNDARY ZERO-CONTROLLABILITY OF 2-DIMENSIONAL NAVIER-STOKES EQUATIONS
    FURSIKOV, AV
    IMANUVILOV, OY
    ACTA APPLICANDAE MATHEMATICAE, 1994, 37 (1-2) : 67 - 76
  • [26] Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions
    Coron, Jean-Michel
    Marbach, Frederic
    Sueur, Franck
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (05) : 1625 - 1673
  • [27] Exact controllability and feedback stabilization from a boundary for the Navier-Stokes equations
    Fursikov, Andrei V.
    CONTROL OF FLUID FLOW, 2006, 330 : 173 - 188
  • [28] Approximate Controllability of Three-Dimensional Navier–Stokes Equations
    Armen Shirikyan
    Communications in Mathematical Physics, 2006, 266 : 123 - 151
  • [29] A class of exact solutions to the three-dimensional incompressible Navier-Stokes equations
    Nugroho, Gunawan
    Ali, Ahmed M. S.
    Karim, Zainal A. Abdul
    APPLIED MATHEMATICS LETTERS, 2010, 23 (11) : 1388 - 1396
  • [30] Attractors for three-dimensional Navier-Stokes equations
    Capinski, M
    Cutland, NJ
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1966): : 2413 - 2426