On Perturbed Substochastic Semigroups in Abstract State Spaces

被引:18
作者
Arlotti, L. [1 ]
Lods, B. [2 ,3 ]
Mokhtar-Kharroubi, M. [4 ]
机构
[1] Univ Udine, Dipartimento Ingn Civile & Architettura, I-33100 Udine, Italy
[2] Univ Turin, Dipartimento Stat & Matemat Applicata, I-10134 Turin, Italy
[3] Univ Turin, Coll Carlo Alberto, I-10134 Turin, Italy
[4] Univ Franche Comte, Equipe Math, CNRS UMR 6623, F-25030 Besancon, France
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2011年 / 30卷 / 04期
关键词
Substochastic semigroups; additive norm; total mass carried by a trajectory; Dyson-Phillips expansion; THEOREM; CONSERVATIVITY; SUFFICIENT; EVOLUTION; DYNAMICS;
D O I
10.4171/ZAA/1444
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The object of this paper is twofold: In the first part, we unify and extend the recent developments on honesty theory of perturbed substochastic semigroups (on L-1(mu)-spaces or noncommutative L-1 spaces) to general state spaces; this allows us to capture for instance a honesty theory in preduals of abstract von Neumann algebras or subspaces of duals of abstract C*-algebras. In the second part of the paper, we provide another honesty theory (a semigroup-perturbation approach) independent of the previous resolvent-perturbation approach and show the equivalence of the two approaches. This second viewpoint on honesty is new even in L-1 (mu) spaces. Several fine properties of Dyson-Phillips expansions are given and a classical generation theorem by T. Kato is revisited.
引用
收藏
页码:457 / 495
页数:39
相关论文
共 39 条
[1]   Decompositions of spaces of measures [J].
Antoniou, Ioannis ;
Karanikas, Costas ;
Shkarin, Stanislav .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (01) :119-126
[2]   A PERTURBATION THEOREM FOR POSITIVE CONTRACTION-SEMIGROUPS ON L1-SPACES WITH APPLICATIONS TO TRANSPORT-EQUATIONS AND KOLMOGOROV DIFFERENTIAL-EQUATIONS [J].
ARLOTTI, L .
ACTA APPLICANDAE MATHEMATICAE, 1991, 23 (02) :129-144
[3]   Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss [J].
Arlotti, L ;
Banasiak, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :693-720
[4]  
ARLOTTI L, HONESTY THE IN PRESS
[5]   Integral representation of the linear Boltzmann operator for granular gas dynamics with applications [J].
Arlotti, Luisa ;
Lods, Bertrand .
JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (03) :517-536
[6]  
Banasiak J, 2001, TAIWAN J MATH, V5, P169
[7]  
BANASIAK J, 2005, PERTURBATIONS POSITI
[8]   POSITIVE ONE-PARAMETER SEMIGROUPS ON ORDERED BANACH-SPACES [J].
BATTY, CJK ;
ROBINSON, DW .
ACTA APPLICANDAE MATHEMATICAE, 1984, 2 (3-4) :221-296
[9]   Conditions sufficient for the conservativity of a minimal quantum dynamical semigroup [J].
Chebotarev, AM ;
Shustikov, SY .
MATHEMATICAL NOTES, 2002, 71 (5-6) :692-710
[10]   Sufficient conditions for conservativity of minimal quantum dynamical semigroups [J].
Chebotarev, AM ;
Fagnola, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 153 (02) :382-404