DIFFERENTIAL GEOMETRIC PROPERTIES ON THE HEISENBERG GROUP

被引:0
作者
Park, Joon-Sik [1 ]
机构
[1] Busan Univ Foreign Studies, Dept Math, Busan 46234, South Korea
关键词
Heisenberg group; Heisenberg manifold; (locally) symmetric Riemannian manifold; Yang-Mills connection; harmonic map; affine map; YANG-MILLS CONNECTIONS; WEYL STRUCTURE; CURVATURES; METRICS;
D O I
10.4134/JKMS.j150453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that there exists no left invariant Riemannian metric h on the Heisenberg group H such that (H, h) is a symmetric Riemannian manifold, and there does not exist any H-invariant metric h on the Heisenberg manifold H/Gamma such that the Riemannian connection on (H/Gamma, h) is a Yang-Mills connection. Moreover, we get necessary and sufficient conditions for a group homomorphism of (SU(2), g) with an arbitrarily given left invariant metric g into (H, h) with an arbitrarily given left invariant metric h to be a harmonic and an affine map, and get the totality of harmonic maps of (SU(2), g) into H with a left invariant metric, and then show the fact that any affine map of (SU(2), g) into H, equipped with a properly given left invariant metric on H, does not exist.
引用
收藏
页码:1149 / 1165
页数:17
相关论文
共 50 条
  • [31] Heisenberg uniqueness pairs for the Fourier transform on the Heisenberg group
    Ghosh, Somnath
    Srivastava, R. K.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [32] Sharp geometric rigidity of isometries on Heisenberg groups
    Isangulova, D. V.
    Vodopyanov, S. K.
    MATHEMATISCHE ANNALEN, 2013, 355 (04) : 1301 - 1329
  • [33] A Koebe distortion theorem for quasiconformal mappings in the Heisenberg group
    Adamowicz, Tomasz
    Fassler, Katrin
    Warhurst, Ben
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (01) : 147 - 186
  • [34] Sub-Finsler Horofunction Boundaries of the Heisenberg Group
    Fisher, Nate
    Golo, Sebastiano Nicolussi
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2021, 9 (01): : 19 - 52
  • [35] Commutators of Multipliers on the Heisenberg Group
    刘和平
    Science China Mathematics, 1993, (11) : 1317 - 1328
  • [36] Uncertainty inequalities for the Heisenberg group
    Xiao, Jinsen
    He, Jianxun
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2012, 122 (04): : 573 - 581
  • [37] Riesz Potential on the Heisenberg Group
    Jinsen Xiao
    Jianxun He
    Journal of Inequalities and Applications, 2011
  • [38] Invariant Translators of the Heisenberg Group
    Giuseppe Pipoli
    The Journal of Geometric Analysis, 2021, 31 : 5219 - 5258
  • [39] Equilateral dimension of the Heisenberg group
    Kim, J.
    Platis, I. D.
    GEOMETRIAE DEDICATA, 2023, 217 (04)
  • [40] Wiener measure for Heisenberg group
    HePing Liu
    YingZhan Wang
    Science China Mathematics, 2014, 57 : 1605 - 1614