DIFFERENTIAL GEOMETRIC PROPERTIES ON THE HEISENBERG GROUP

被引:0
|
作者
Park, Joon-Sik [1 ]
机构
[1] Busan Univ Foreign Studies, Dept Math, Busan 46234, South Korea
关键词
Heisenberg group; Heisenberg manifold; (locally) symmetric Riemannian manifold; Yang-Mills connection; harmonic map; affine map; YANG-MILLS CONNECTIONS; WEYL STRUCTURE; CURVATURES; METRICS;
D O I
10.4134/JKMS.j150453
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that there exists no left invariant Riemannian metric h on the Heisenberg group H such that (H, h) is a symmetric Riemannian manifold, and there does not exist any H-invariant metric h on the Heisenberg manifold H/Gamma such that the Riemannian connection on (H/Gamma, h) is a Yang-Mills connection. Moreover, we get necessary and sufficient conditions for a group homomorphism of (SU(2), g) with an arbitrarily given left invariant metric g into (H, h) with an arbitrarily given left invariant metric h to be a harmonic and an affine map, and get the totality of harmonic maps of (SU(2), g) into H with a left invariant metric, and then show the fact that any affine map of (SU(2), g) into H, equipped with a properly given left invariant metric on H, does not exist.
引用
收藏
页码:1149 / 1165
页数:17
相关论文
共 50 条
  • [21] Quasiconvexity in the Heisenberg group
    Herron, David A.
    Lukyanenko, Anton
    Tyson, Jeremy T.
    GEOMETRIAE DEDICATA, 2018, 192 (01) : 157 - 170
  • [22] Quasiconvexity in the Heisenberg group
    David A. Herron
    Anton Lukyanenko
    Jeremy T. Tyson
    Geometriae Dedicata, 2018, 192 : 157 - 170
  • [23] Geodesics in the Heisenberg Group
    Hajlasz, Piotr
    Zimmerman, Scott
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2015, 3 (01): : 325 - 337
  • [24] Solvability on the Heisenberg group
    Karadzhov, GE
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (04) : 400 - 414
  • [25] LP-IMPROVING PROPERTIES OF CERTAIN SINGULAR MEASURES ON THE HEISENBERG GROUP
    Rocha, Pablo
    Blanca, Bahia
    MATHEMATICA BOHEMICA, 2022, 147 (01): : 131 - 140
  • [26] Global Differential Geometry of Curves in Three-Dimensional Heisenberg Group and CR Sphere
    Hung-Lin Chiu
    Pak Tung Ho
    The Journal of Geometric Analysis, 2019, 29 : 3438 - 3469
  • [27] Keller-Osserman type conditions for differential inequalities with gradient terms on the Heisenberg group
    Magliaro, Marco
    Mari, Luciano
    Mastrolia, Paolo
    Rigoli, Marco
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (06) : 2643 - 2670
  • [28] Hilbert-Schmidt and trace class pseudo-differential operators on the Heisenberg group
    Dasgupta, Aparajita
    Wong, M. W.
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2013, 4 (03) : 345 - 359
  • [29] Properties of solutions to fractional p-subLaplace equations on the Heisenberg group
    Xinjing Wang
    Guangwei Du
    Boundary Value Problems, 2020
  • [30] Global Differential Geometry of Curves in Three-Dimensional Heisenberg Group and CR Sphere
    Chiu, Hung-Lin
    Ho, Pak Tung
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3438 - 3469