Mortality Prediction using Machine Learning Techniques: Comparative Analysis

被引:0
|
作者
Verma, Akash [1 ]
Goyal, Shreya [2 ]
Thakur, Shridhar Kumar [3 ]
Gupta, Archit [4 ]
Gupta, Indrajeet [5 ]
机构
[1] Bhilai Inst Technol, Dept CSE, Durg, India
[2] Natl Inst Technol, Dept CSE, Jalandhar, Punjab, India
[3] Galgotias Univ, Dept Comp Sci, Greater Noida, India
[4] ABES Engn Coll, Dept Comp Sci, Ghaziabad, India
[5] Bennett Univ, Dept CSE, Greater Noida, India
来源
PROCEEDINGS OF THE 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC 2019) | 2019年
关键词
Machine Learning Algorithm; Feature Scaling; Feature Extraction; Neural Networks; Logistics Regression; Support Vector Machine; HOSPITAL MORTALITY;
D O I
10.1109/iacc48062.2019.8971566
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In recent past, data mining, artificial intelligence, and machine learning have gained enormous attention to improve hospital performance. In some hospitals, medical personals want to improve their statists by decreasing the number of patients dying in the hospital. The research is focused on the mortality prediction of measurable outcomes, including the risk of complications & length of hospital stay. The duration spent in the hospital of the patient plays an important role both for patients & healthcare providers, influenced by numerous factors. LOS (length of stay) in critical care has great importance, both to the patient experience as well as the cost of care and is influenced by the complex environmental factors of the Hospitals. LOS is a parameter that is used to identify the extremity of illness & health-related resource utilization. This paper provides the improved prediction rate that a patient survives or dies in the range of length of stay in the hospital. It also anchors the analytical methods for the length of stay and mortality prediction.
引用
收藏
页码:230 / 234
页数:5
相关论文
共 50 条
  • [21] Review of bankruptcy prediction using machine learning and deep learning techniques
    Qu, Yi
    Quan, Pei
    Lei, Minglong
    Shi, Yong
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 895 - 899
  • [22] Prediction of Cooling Energy Consumption in Hotel Building Using Machine Learning Techniques
    Borowski, Marek
    Zwolinska, Klaudia
    ENERGIES, 2020, 13 (23)
  • [23] Mortality Prediction in ICU Patients Using Machine Learning Models
    Ahmad, Fawad
    Ayub, Huma
    Liaqat, Rehan
    Khan, Akhyar Ali
    Nawaz, Ali
    Younis, Babar
    PROCEEDINGS OF 2021 INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGIES (IBCAST), 2021, : 372 - 376
  • [24] Comparative assessment of rainfall-based water level prediction using machine learning (ML) techniques
    Pathan, Azazkhan Ibrahimkhan
    Sidek, Lariyah Bte Mohd
    Basri, Hidayah Bte
    Hassan, Muhammad Yusuf
    Khebir, Muhammad Izzat Azhar Bin
    Omar, Siti Mariam Binti Allias
    Khambali, Mohd Hazri bin Moh
    Torres, Adrian Morales
    Ahmed, Ali Najah
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (07)
  • [25] An analytical method for diseases prediction using machine learning techniques
    Nilashi, Mehrbakhsh
    bin Ibrahim, Othman
    Ahmadi, Hossein
    Shahmoradi, Leila
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 106 : 212 - 223
  • [26] An Effective Disease Prediction Algorithms Using Machine Learning Techniques
    Sirivanth, Paladugu
    Rao, N. V. Krishna
    Manduva, Jenvith
    Thirupathi, J.
    Kavya, S. P., V
    Tejaswini, M.
    Sruthi, K. Sai
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 502 - 507
  • [27] Temperature prediction of heat sources using machine learning techniques
    Durgam, Shankar
    Bhosale, Ajinkya
    Bhosale, Vivek
    Deshpande, Revati
    Sutar, Pankaj
    Kamble, Subodh
    HEAT TRANSFER, 2021, 50 (08) : 7817 - 7838
  • [28] Solar Radiation Prediction Using Machine Learning Techniques: A Review
    Obando, E.
    Carvajal, S.
    Pineda, J.
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (04) : 684 - 697
  • [29] Application of machine learning techniques to the analysis and prediction of drug pharmacokinetics
    Ota, Ryosaku
    Yamashita, Fumiyoshi
    JOURNAL OF CONTROLLED RELEASE, 2022, 352 : 961 - 969
  • [30] Diabetes prediction using machine learning and explainable AI techniques
    Tasin, Isfafuzzaman
    Nabil, Tansin Ullah
    Islam, Sanjida
    Khan, Riasat
    HEALTHCARE TECHNOLOGY LETTERS, 2023, 10 (1-2) : 1 - 10