Partial detachment of high power discharges in ASDEX Upgrade

被引:201
作者
Kallenbach, A. [1 ]
Bernert, M. [1 ]
Beurskens, M. [2 ]
Casali, L. [1 ]
Dunne, M. [1 ]
Eich, T. [1 ]
Giannone, L. [1 ]
Herrmann, A. [1 ]
Maraschek, M. [1 ]
Potzel, S. [1 ]
Reimold, F. [1 ]
Rohde, V. [1 ]
Schweinzer, J. [1 ]
Viezzer, E. [1 ]
Wischmeier, M. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[2] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
基金
欧盟地平线“2020”;
关键词
power exhaust; detachment; ASDEX Upgrade; DIVERTOR; ITER;
D O I
10.1088/0029-5515/55/5/053026
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Detachment of high power discharges is obtained in ASDEX Upgrade by simultaneous feedback control of core radiation and divertor radiation or thermoelectric currents by the injection of radiating impurities. So far 2/3 of the ITER normalized heat flux P-sep/R = 15 MW m(-1) has been obtained in ASDEX Upgrade under partially detached conditions with a peak target heat flux well below 10 MW m(-2). When the detachment is further pronounced towards lower peak heat flux at the target, substantial changes in edge localized mode (ELM) behaviour, density and radiation distribution occur. The time-averaged peak heat flux at both divertor targets can be reduced below 2 MW m(-2), which offers an attractive DEMO divertor scenario with potential for simpler and cheaper technical solutions. Generally, pronounced detachment leads to a pedestal and core density rise by about 20-40%, moderate (< 20%) confinement degradation and a reduction of ELM size. For AUG conditions, some operational challenges occur, like the density cut-off limit for X-2 electron cyclotron resonance heating, which is used for central tungsten control.
引用
收藏
页数:8
相关论文
共 18 条
[1]   The H-mode density limit in the full tungsten ASDEX Upgrade tokamak [J].
Bernert, M. ;
Eich, T. ;
Kallenbach, A. ;
Carralero, D. ;
Huber, A. ;
Lang, P. T. ;
Potzel, S. ;
Reimold, F. ;
Schweinzer, J. ;
Viezzer, E. ;
Zohm, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (01)
[2]   The effect of a metal wall on confinement in JET and ASDEX Upgrade [J].
Beurskens, M. N. A. ;
Schweinzer, J. ;
Angioni, C. ;
Burckhart, A. ;
Challis, C. D. ;
Chapman, I. ;
Fischer, R. ;
Flanagan, J. ;
Frassinetti, L. ;
Giroud, C. ;
Hobirk, J. ;
Joffrin, E. ;
Kallenbach, A. ;
Kempenaars, M. ;
Leyland, M. ;
Lomas, P. ;
Maddison, G. ;
Maslov, M. ;
McDermott, R. ;
Neu, R. ;
Nunes, I. ;
Osborne, T. ;
Ryter, F. ;
Saarelma, S. ;
Schneider, P. A. ;
Snyder, P. ;
Tardini, G. ;
Viezzer, E. ;
Wolfrum, E. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
[3]   Integration of a radiative divertor for heat load control into JET high triangularity ELMy H-mode plasmas [J].
Giroud, C. ;
Maddison, G. ;
McCormick, K. ;
Beurskens, M. N. A. ;
Brezinsek, S. ;
Devaux, S. ;
Eich, T. ;
Frassinetti, L. ;
Fundamenski, W. ;
Groth, M. ;
Huber, A. ;
Jachmich, S. ;
Jarvinen, A. ;
Kallenbach, A. ;
Krieger, K. ;
Moulton, D. ;
Saarelma, S. ;
Thomsen, H. ;
Wiesen, S. ;
Alonso, A. ;
Alper, B. ;
Arnoux, G. ;
Belo, P. ;
Boboc, A. ;
Brett, A. ;
Brix, M. ;
Coffey, I. ;
de la Luna, E. ;
Dodt, D. ;
De Vries, P. ;
Felton, R. ;
Giovanozzi, E. ;
Harling, J. ;
Harting, D. ;
Hawkes, N. ;
Hobirk, J. ;
Jenkins, I. ;
Joffrin, E. ;
Kempenaars, M. ;
Lehnen, M. ;
Loarer, T. ;
Lomas, P. ;
Mailloux, J. ;
McDonald, D. ;
Meigs, A. ;
Morgan, P. ;
Nunes, I. ;
van Thun, C. Perez ;
Riccardo, V. ;
Rimini, F. .
NUCLEAR FUSION, 2012, 52 (06)
[4]   Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO [J].
Kallenbach, A. ;
Bernert, M. ;
Dux, R. ;
Casali, L. ;
Eich, T. ;
Giannone, L. ;
Herrmann, A. ;
McDermott, R. ;
Mlynek, A. ;
Mueller, H. W. ;
Reimold, F. ;
Schweinzer, J. ;
Sertoli, M. ;
Tardini, G. ;
Treutterer, W. ;
Viezzer, E. ;
Wenninger, R. ;
Wischmeier, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2013, 55 (12)
[5]   Optimized tokamak power exhaust with double radiative feedback in ASDEX Upgrade [J].
Kallenbach, A. ;
Bernert, M. ;
Eich, T. ;
Fuchs, J. C. ;
Giannone, L. ;
Herrmann, A. ;
Schweinzer, J. ;
Treutterer, W. .
NUCLEAR FUSION, 2012, 52 (12)
[6]   Consequences of a reduction of the upstream power SOL width in ITER [J].
Kukushkin, A. S. ;
Pacher, H. D. ;
Pacher, G. W. ;
Kotov, V. ;
Pitts, R. A. ;
Reiter, D. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 438 :S203-S207
[7]   Scaling radiative divertor solutions to high power in DIII-D [J].
Leonard, A. W. ;
Mahdavi, M. A. ;
Lasnier, C. J. ;
Petrie, T. W. ;
Stangeby, P. C. .
NUCLEAR FUSION, 2012, 52 (06)
[8]   Divertor physics research on Alcator C-Mod [J].
Lipschultz, B. ;
LaBombard, B. ;
Terry, J. L. ;
Boswell, C. ;
Hutchinson, I. H. .
FUSION SCIENCE AND TECHNOLOGY, 2007, 51 (03) :369-389
[9]   High confinement/high radiated power H-mode experiments in Alcator C-Mod and consequences for International Thermonuclear Experimental Reactor (ITER) QDT=10 operation [J].
Loarte, A. ;
Hughes, J. W. ;
Reinke, M. L. ;
Terry, J. L. ;
LaBombard, B. ;
Brunner, D. ;
Greenwald, M. ;
Lipschultz, B. ;
Ma, Y. ;
Wukitch, S. ;
Wolfe, S. .
PHYSICS OF PLASMAS, 2011, 18 (05)
[10]   Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER [J].
Loarte, A ;
Saibene, G ;
Sartori, R ;
Campbell, D ;
Becoulet, M ;
Horton, L ;
Eich, T ;
Herrmann, A ;
Matthews, G ;
Asakura, N ;
Chankin, A ;
Leonard, A ;
Porter, G ;
Federici, G ;
Janeschitz, G ;
Shimada, M ;
Sugihara, M .
PLASMA PHYSICS AND CONTROLLED FUSION, 2003, 45 (09) :1549-1569